• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

多元协同演绎在一阶逻辑ATP中的应用

曹锋 徐扬 陈树伟 吴贯锋 常文静

曹锋, 徐扬, 陈树伟, 吴贯锋, 常文静. 多元协同演绎在一阶逻辑ATP中的应用[J]. 西南交通大学学报, 2020, 55(2): 401-408, 427. doi: 10.3969/j.issn.0258-2724.20180800
引用本文: 曹锋, 徐扬, 陈树伟, 吴贯锋, 常文静. 多元协同演绎在一阶逻辑ATP中的应用[J]. 西南交通大学学报, 2020, 55(2): 401-408, 427. doi: 10.3969/j.issn.0258-2724.20180800
CAO Feng, XU Yang, CHEN Shuwei, WU Guanfeng, CHANG Wenjing. Application of Multi-Clause Synergized Deduction in First-Order Logic Automated Theorem Proving[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 401-408, 427. doi: 10.3969/j.issn.0258-2724.20180800
Citation: CAO Feng, XU Yang, CHEN Shuwei, WU Guanfeng, CHANG Wenjing. Application of Multi-Clause Synergized Deduction in First-Order Logic Automated Theorem Proving[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 401-408, 427. doi: 10.3969/j.issn.0258-2724.20180800

多元协同演绎在一阶逻辑ATP中的应用

doi: 10.3969/j.issn.0258-2724.20180800
基金项目: 国家自然科学基金(61673320);中央高校基本科研业务费专项资金(2682017ZT12,2682018CX59,2682018ZT25)
详细信息
    作者简介:

    曹锋(1984—),男,博士研究生,研究方向为智能信息处理,自动推理与一阶逻辑自动定理证明,E-mail:caofeng19840301@163.com

    通讯作者:

    吴贯锋(1986—),男,工程师,博士,研究方向为智能信息处理、自动推理与并行计算,wl520gx@gmail.com

  • 中图分类号: TP311.1

Application of Multi-Clause Synergized Deduction in First-Order Logic Automated Theorem Proving

  • 摘要: 一阶逻辑是数理逻辑中重要的分支,对其逻辑公式的自动推理是人工智能领域重要的研究热点之一. 目前一阶逻辑自动定理证明大多采用二元归结方法,每次只有2个子句进行归结,只消去1组互补对,导致演绎归结式文字数较多,影响了演绎效率. 为此,基于矛盾体分离规则提出了一种多元协同演绎算法,该算法每次允许多个子句进行协同演绎,消去多组互补对,从而演绎分离式文字数较少且可控,能有效提高推理能力;并且,该算法通过有效演绎权重和无效演绎权重调整子句演绎顺序,利用回溯机制搜索较优路径,有效规划演绎路径. 将该算法应用于国际顶尖证明器Eprover 2.1,以CADE2017竞赛例(FOF组)为测试对象,对加入多元协同演绎算法的Eprover 2.1证明器进行试验. 试验结果表明其能力超过了Eprover 2.1:多证明定理8个;能证明Eprover 2.1未证明定理31个,占未证明总数的28.2%.

     

  • 图 1  CSE_E设计流程

    Figure 1.  CSE_E design flow

    图 2  CSE_E与Eprover 2.1证明定理时间与个数分布

    Figure 2.  Distribution graph of time and the number of solved theorems by CSE_E and Eprover 2.1

    图 3  已证明定理在顶尖证明器中的判定对比

    Figure 3.  Comparison of solved theorems by top provers

    表  1  CSE_E与Eprover 2.1在不同难度系数下证明定理数量对比

    Table  1.   Numbers of solved theorems byCSE_E and Eprover 2.1 with different ratings

    证明器0 ≤ R < 0.50.5 ≤ R < 0.60.6 ≤ R < 0.7
    CSE_E 221 59 31
    Eprover 2.1 221 57 30
    证明器 0.7 ≤ R < 0.8 0.8 ≤ R < 0.9 0.9 ≤ R < 1.0
    CSE_E 56 27 4
    Eprover 2.1 51 26 5
    下载: 导出CSV

    表  2  CSE_E证明的31个定理判定情况

    Table  2.   Details of 31 theorems solved by CSE_E

    定理名称难度等级子句数最大文字数证明时间/s 定理名称难度等级子句数最大文字数证明时间/s
    AGT011+2 0.86 923 8 224.760 LCL658+1.005 0.50 2 32 243.104
    BOO109+1 0.67 3 6 60.036 LCL658+1.010 0.50 2 40 293.124
    GEO090+1 0.79 17 12 133.250 LCL660+1.001 0.33 2 37 163.852
    GEO491+1 0.90 45 22 108.680 SCT143+1 0.76 523 19 114.688
    GEO495+1 0.79 68 22 90.124 SCT170+2 0.90 1 012 18 160.340
    GEO502+1 0.55 126 22 2.680 SET672+3 0.90 29 13 151.700
    GEO506+1 0.83 143 22 91.316 SWB010+1 0.90 560 27 119.477
    GEO507+1 0.62 144 22 91.364 SWB025+1 0.72 560 27 6.156
    GEO511+1 0.90 162 22 150.176 SWB027+1 0.79 560 27 60.076
    GEO517+1 0.79 181 30 150.144 SWB070+1 0.90 560 27 108.263
    GEO521+1 0.97 195 30 138.144 SWB081+1 0.79 560 27 121.108
    GEO531+1 0.66 222 31 132.076 SWB093+1 0.79 560 27 1.530
    GEO532+1 0.76 223 31 150.228 SWB104+1 0.83 560 27 20.080
    GEO536+1 0.86 229 31 244.877 SWW100+1 0.79 45 10 256.170
    LAT306+2 0.97 2 959 27 294.385 SYN938+1 0.17 1 55 283.660
    SYO525+1.021 0.67 30 28 92.556
    下载: 导出CSV
  • PAVLOV V, SCHUKIN A, CHERKASOVA T. Exploring automated reasoning in first-order logic:tools,techniques and application areas[J]. Communications in Computer & Information Science, 2013, 394(1): 102-116.
    DAVIS M. The early history of automated deduction[J]. Handbook of Automated Reasoning, 2002, 714(3): 5-15.
    PLAISTED D A. History and prospects for first-order automated deduction[C]//Proceedings of 25th International Conference on Automated Deduction. Cham: Springer, 2015: 3-28.
    ROBINSON J A. The generalized resolution principle[M]//SIEKMANN J, WRIGHTSON G. Automation of Reasoning-3. Berlin Heidelberg: Springer International Publishing, 1983: 135-151.
    RUBIN N, HARRISON M C. Another generalization of resolution[J]. Journal of the Association for Computing Machinery, 1978, 25(3): 341-351. doi: 10.1145/322077.322078
    LU Ruzhan, LIN Kai, SUN Yongqiang. Colored resolution,pi-colored clash and its completeness[J]. Journal of Computer, 1987, 12: 18-25.
    LOVELAND D W. A linear format for resolution[C]//Symposium on Automatic Demonstration. Berlin: Springer, 1970: 147-162.
    LUCKHAM D. Refinements in resolution theory[C]//Symposium on Automatic Demonstration. Berlin: Springer, 1970: 163-190.
    OVERBEEK R, MCCHAREN J, WOS L. Complexity and related enhancements for automated theorem-proving programs[J]. Computers & Mathematics with Applications, 1976, 2(1): 1-16.
    ROBINSON J A. Automatic deduction with hyper-resolution[J]. International Journal of Computing & Mathematics, 1965, 1(3): 227-234.
    SLANEY J, PALEO B W. Conflict resolution:a first-order resolution calculus with decision literals and conflict-driven clause learning[J]. Journal of Automated Reasoning, 2016, 12(4): 1-24.
    RIAZANOV A, VORONKOV A. The design and implementation of vampire[J]. Ai Communications, 2002, 15(2): 91-110.
    VORONKOV A. First-order theorem proving and vampire[C]//Proceedings of International Conference on Computer Aided Verification. Berlin: Springer-Verlag, 2013: 1-35.
    SCHULZ S. E-a brainiac theorem prover[J]. AI Com- munications, 2002, 15(2): 111-126.
    SCHULZ S. System description: E 1.8[C]//Proceedings of 19th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. Berlin: Springer-Verlag, 2013: 735-743.
    BAUMGARTNER P, BAX J, WALDMANN U. Beagle-a hierarchic superposition theorem prover[C]// Proceedings of 25th International Conference on Automated Deduction. Cham: Springer, 2015: 367-377.
    WEIDENBACH C, BRAHM U, HILLENBRAND T, et al. Spass version 2.0[C]//Proceedings of International Conference on Automated Deduction. Berlin: Springer-Verlag, 2002: 275-279.
    VORONKOV A. AVATAR: The architecture for first-order theorem provers[C]//Proceedings of International Conference on Computer Aided Verification. Cham: Springer, 2014: 696-710.
    DENZINGER J, KRONENBURG M, SCHULZ S. DISCOUNT-a distributed and learning equational prover[J]. Journal of Automated Reasoning, 1997, 18(2): 189-198. doi: 10.1023/A:1005879229581
    MCCUNE W, WOS L. Otter-the CADE-13 competition incarnations[J]. Journal of Automated Reasoning, 1997, 18(2): 211-220. doi: 10.1023/A:1005843632307
    REGER G, TISHKOVSKY D, VORONKOV A. Cooperating proof attempts[C]//Proceedings of 25th International Conference on Automated Deduction. Cham: Springer, 2015: 339-355.
    SCHULZ S, MOHNMANN M. Performance of clause selection heuristics for saturation-based theorem proving[C]//Proceedings of 8th International Joint Conference. Cham: Springer, 2016: 330-345.
    HODER K, REGER G, SUDA M, et al. Selecting the selection[C]//Proceedings of 8th International Joint Conference on Automated Reasoning. Cham: Springer, 2016: 313-329.
    XU Yang, LIU Jun, CHEN Shuwei, et al. Contradiction separation based dynamic multi-clause synergized automated deduction[J]. Information Sciences, 2018, 462(5): 93-113.
    XU Yang, LIU Jun, CHEN Shuwei, et al. Distinctive features of the contradiction separation based dynamic automated deduction[C]//Proceedings of 13th International FLINS Conference on Decision Making and Soft Computing. Belfast: World Scientific, 2018: 725-732.
    SUTCLIFFE.G.The 7th IJCAR automated theorem proving system competition-CASC-J7[J]. AI Communications, 2015, 28(4): 683-692. doi: 10.3233/AIC-150668
    SUTCLIFFE.G.The 8th IJCAR automated theorem proving system competition-CASC-J8[J]. AI Communications, 2016, 29(5): 607-619. doi: 10.3233/AIC-160709
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  576
  • HTML全文浏览量:  273
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2019-04-01
  • 网络出版日期:  2019-05-30
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回