• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

燃料电池混合动力的功率跟随管理策略分析

刘楠 于博轩 郭爱 李明 张秋敏 陈维荣 戴朝华

刘楠, 于博轩, 郭爱, 李明, 张秋敏, 陈维荣, 戴朝华. 燃料电池混合动力的功率跟随管理策略分析[J]. 西南交通大学学报, 2020, 55(6): 1147-1154. doi: 10.3969/j.issn.0258-2724.20180733
引用本文: 刘楠, 于博轩, 郭爱, 李明, 张秋敏, 陈维荣, 戴朝华. 燃料电池混合动力的功率跟随管理策略分析[J]. 西南交通大学学报, 2020, 55(6): 1147-1154. doi: 10.3969/j.issn.0258-2724.20180733
LIU Nan, YU Boxuan, GUO Ai, LI Ming, ZHANG Qiumin, CHEN Weirong, DAI Zhaohua. Analysis of Power Tracking Management Strategy for Fuel Cell Hybrid System[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1147-1154. doi: 10.3969/j.issn.0258-2724.20180733
Citation: LIU Nan, YU Boxuan, GUO Ai, LI Ming, ZHANG Qiumin, CHEN Weirong, DAI Zhaohua. Analysis of Power Tracking Management Strategy for Fuel Cell Hybrid System[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1147-1154. doi: 10.3969/j.issn.0258-2724.20180733

燃料电池混合动力的功率跟随管理策略分析

doi: 10.3969/j.issn.0258-2724.20180733
基金项目: 国家重点研发计划(2017YFB1201003,2017YFB1201005)
详细信息
    作者简介:

    刘楠(1981—),男,工程师,研究方向为新能源轨道车辆设计,E-mail:liunan@tangche.com

    通讯作者:

    郭爱(1970—),女,讲师,研究方向为车载然料电池建模与控制、混合能量管理,E-mail:guoai@swjtu.edu.cn

  • 中图分类号: TM911.4

Analysis of Power Tracking Management Strategy for Fuel Cell Hybrid System

  • 摘要: 为了提高燃料电池混合动力系统的经济性,基于燃料电池氢耗量和功率波动率,对功率跟随能量管理策略中参数和荷电状态(SOC)调节方式进行了分析,并定义了燃料电池的功率波动率;基于仿真软件ADVISOR中建立的燃料电池/超级电容混合动力系统模型,计算了不同的超级电容SOC限值和充电功率参数时的燃料氢耗量和波动率;设计了两种SOC调节方法,即Z曲线法和比例积分(PI)调节法,比较了不同SOC调节方法下的氢耗量和波动率. 研究结果表明:若SOC的下限增大,致使氢耗量和波动率增加,SOC下限为0.5时的氢耗量比0.25时增加7.10%,波动率增加3.85%;若SOC的上限增大,燃料电池波动率减小,0.95时的波动率比0.75时减小3.51%;充电功率参数在一定范围改变,能够减小燃料电池氢耗量和波动率;SOC调节方式中,当SOC初始值在 [0.28,0.52] 区间,PI调节法的波动率最优;当SOC初始值在 [0.75,0.90],Z曲线法的波动率最优.

     

  • 图 1  燃料电池功率分配策略

    Figure 1.  Power distribution strategy of fuel cell

    图 2  EUDC工况下速度、SOC和系统功率

    Figure 2.  Speed, SOC and powers in EUDC

    图 3  SOC, hi对氢耗量、波动率的影响

    Figure 3.  SOC, hi vs. hydrogen consumption, fluctuation rate

    图 4  充电功率对氢耗量、波动率影响

    Figure 4.  Charging power parameter vs. hydrogen consumption, fluctuation rate

    图 5  系数fSOCfZs)的曲线

    Figure 5.  Curves of coefficient fSOC and fZ (s)

    图 6  PI调节法

    Figure 6.  PI adjusting method

    图 7  3种方式的燃料电池氢耗量和波动率

    Figure 7.  Hydrogen consumption, fluctuation in three ways

    表  1  控制参数

    Table  1.   Control parameters

    参数取值参数取值
    SOC,lo 0.25 SOC,hi 0.95
    pcs,min/kW 3 pcs,max/kW 19
    kcs,rise/(kW•s−1 0.8 kcs,fall/(kW•s−1 −1.2
    pcs,chg/kW 4 SOC0 0.25
    下载: 导出CSV

    表  2  不同SOC,lo时的SOC和氢耗量

    Table  2.   SOC and hydrogen consumption at different SOC,lo

    SOC,lo氢耗量/gSOC 最大值SOC 最小值SOC 的均值功率均值/kW方差/
    kW
    波动率/%
    0.25 60.73 0.67 0.23 0.50 9.645 5.57 57.70
    0.30 61.60 0.72 0.25 0.53 9.781 5.58 57.10
    0.40 63.82 0.81 0.25 0.58 10.120 5.65 55.82
    0.45 64.32 0.85 0.25 0.60 10.200 5.64 55.29
    0.5 65.06 0.88 0.25 0.63 10.300 5.72 55.56
    下载: 导出CSV

    表  3  3种SOC调节方式下氢耗量与燃料电池功率

    Table  3.   Hydrogen consumption under three adjust methods of SOC

    方法氢耗量/g均值/kW方差/kW波动率λ/%
    线性法 60.73 9.645 5.566 57.72
    Z 曲线法 61.23 9.701 5.713 58.93
    PI 调节法 60.96 9.692 5.519 56.94
    下载: 导出CSV
  • DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control:a review[J]. Renewable Energy, 2017, 113: 620-638. doi: 10.1016/j.renene.2017.06.027
    陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报,2009,44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001

    CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001
    陈维荣,张国瑞,孟翔,等. 燃料电池混合动力有轨电车动力性分析与设计[J]. 西南交通大学学报,2017,52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001

    CHEN Weirong, ZHANG Guorui, MENG Xiang, et al. Dynamic performance analysis and design of fuel cell hybrid locomotive[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001
    PALADINI V, DONATEO T, DE RISI A, et al. Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development[J]. Energy Conversion and Management, 2007, 48(11): 3001-3008. doi: 10.1016/j.enconman.2007.07.014
    DI WU, WILLIAMSON S S. Status review of power control strategies for fuel cell based hybrid electric vehicles[C]//IEEE Canada Electrical Power Conference. [S.l.]: IEEE, 2007: 218-223.
    TORREGLOSA J P, JURADO F, GARCIA P, et al. Hybrid fuel cell and battery tramway control based on an equivalent consumption minimization strategy[J]. Control Engineering Practice, 2011, 19(10): 1182-1194. doi: 10.1016/j.conengprac.2011.06.008
    LI C, LIU G. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles[J]. Journal of Power Sources, 2009, 192(2): 525-533. doi: 10.1016/j.jpowsour.2009.03.007
    FERNANDEZ L M, GARCIA P, GARCIA C A, et al. Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5731-5744. doi: 10.1016/j.ijhydene.2010.02.132
    RODATZ P, PAGANELLI G, SCIARRETTA A, et al. Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle[J]. Control Engineering Practice, 2005, 13(1): 41-53. doi: 10.1016/j.conengprac.2003.12.016
    WU C, CHEN J, XU C, et al. Real-Time adaptive control of a fuel cell/battery hybrid power system with guaranteed stability[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1394-1405. doi: 10.1109/TCST.2016.2611558
    PAYMAN A, PIERFEDERICI S, MEIBODY-TAB-AR F, et al. An adapted control strategy to minimize DC-Bus capacitors of a parallel fuel cell/ultracapacitor hybrid system[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3843-3852. doi: 10.1109/TPEL.2009.2030683
    TORREGLOSA J P, GARCIA P, FERNANDEZ L M, et al. Predictive control for the energy management of a fuel-cell-battery-supercapacitor tramway[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 276-285. doi: 10.1109/TII.2013.2245140
    LI Q, WANG T, DAI C, et al. Power Management Strategy based on Adaptive Droop Control for a fuel cell-battery-supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5658-5670. doi: 10.1109/TVT.2017.2715178
    LIU J, ZHAO Y, GENG B, et al. Adaptive second order sliding mode control of a fuel cell hybrid system for electric vehicle applications[J]. Mathematical Probl-ems in Engineering, 2015, 2015(8): 1-14.
    陈维荣,刘嘉蔚,郭爱,等. 14.4 kW PEMFC电堆单体电压均衡性实验研究[J]. 西南交通大学学报,2017,52(3): 429-438. doi: 10.3969/j.issn.0258-2724.2017.03.001

    CHEN Weirong, LIU Jiawei, GUO Ai, et al. Experi-mental study on voltage uniformity of 14.4 kW PEMFC stack single cell[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 429-438. doi: 10.3969/j.issn.0258-2724.2017.03.001
    LARMINIE J, DICKS A. Fuel cell systems explained [M]. Second Edition. [S.l.]: West Sussex John Wiley & Sons, Ltd., 2003: 34.
    赵坤. 城轨交通车载超级电容储能系统能量管理及容量配置研究[D]. 北京: 北京交通大学, 2013.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1002
  • HTML全文浏览量:  440
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-04
  • 修回日期:  2018-11-22
  • 网络出版日期:  2020-03-11
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回