Numerical Simulation of Interior Connections of Precast Concrete Frame with Post-Tensioned Tendons
-
摘要: 为了解决有限元研究中预制混凝土框架节点处新旧混凝土叠合层界面黏结与穿过叠合层钢筋难以模拟的问题,讨论了有限元软件ABAQUS中模拟新旧混凝土叠合层黏结性能的不同方法,引入叠合层的黏结滑移本构和钢筋的剪切-滑移模型相结合的本构关系,建立后张预应力预制混凝土框架中节点非线性有限元分析模型,计算结果与足尺模型的试验结果吻合较好,并在此基础上重点开展了轴压比、混凝土强度、预应力筋有效应力及筋黏结构造(全黏结、部分黏结和无黏结)等有限元参数分析. 分析结果表明:轴压比由0.2增加到0.4时,承载力提高了11%,由0.4增加到0.6时,承载力增加不明显;提高混凝土强度、增加有效预应力可显著提高承载力;预应力筋黏结构造对节点承载力影响不显著,增加无黏结长度,可一定程度延缓节点的屈服.Abstract: In order to solve the problem that bond-slip of new and old concrete interfaces and treatment of shear reinforcement bars are challenges for finite element analysis of precast concrete frame joints, different methods in ABAQUS available for simulating the behavior of new and old concrete interfaces were deeply discussed. A new constitutive relation which combines bond-slip between new and old concrete interfaces with shear-slip model of shear reinforcement bar was introduced, and nonlinear finite element models (FEM) were carried out. The calculated results were agreed well with the experimental results of full-scale model test. And then an analysis of parameters was performed, which focused on influences of axial compression ratio, concrete strength, effective stress of prestressed tendon and bonded construction of prestressed tendons (full bond, partial bond and unbonded). The results show that bearing capacity increases by 11% with axial compression ratio increases from 0.2 to 0.4. However, the bearing capacity does not increase significantly when the axial pressure ratio increases from 0.4 to 0.6. Bearing capacity increases with the increasing of concrete strength and effective stress of prestressed tendons. Three types of bonding construction of the prestressed tendons have no obvious influence on the bearing capacity of the connections, but increasing the unbonded length of prestressed tendons may delay the connections yield.
-
表 1 屈服荷载、峰值荷载对比
Table 1. Comparison of yield load and peak load
荷载/kN RC1 PC1 PC2 有限元 试验 有限元 试验 有限元 试验 Py 900 951 953 1 009 950 920 Pmax 1 108 1 056 1 092 1 102 1 098 1 124 注:Py 与 Pmax 分别为屈服荷载、峰值荷载. -
BLAKCY R W G, PARK R. Seismic resistance of prestressed concrete beam-column assemblies[J]. Journal of the American Concrete Institute, 1971, 68(9): 677-692. 廖显东. 预制预应力混凝土框架结构体系研究与应用进展[J]. 建筑结构,2015,45(22): 65-70.LIAO Xiandong. Progress of studies and applications of precast prestressed concrete frame structural systems[J]. Building Structure, 2015, 45(22): 65-70. 姚睿,刘航,李晨光. 预制预应力装配式框架节点抗震性能有限元分析[J]. 建筑技术开发,2010,37(6): 2-7. doi: 10.3969/j.issn.1001-523X.2010.06.002YAO Rui, LIU Hang, LI Chenguang. Finite element analysis on seismic behaviors of precast beam-column joint assembled with post-tensioning[J]. Building Technique Development, 2010, 37(6): 2-7. doi: 10.3969/j.issn.1001-523X.2010.06.002 种迅,孟少平,张林振. 后张预应力预制混凝土框架节点抗震性能数值模拟与理论分析[J]. 工程力学,2013,30(5): 153-159.CHONG Xun, MENG Shaoping, ZHANG Linzhen. Numeriacal and theoretical analysis on seismic performance of post-tensioned prestressed concrete beam-column assemblages[J]. Engineering Mechanics, 2013, 30(5): 153-159. 魏余特,邓思华,李晨光,等. 基于Marc的预制预应力混凝土框架节点有限元分析[J]. 土木建筑工程信息技术,2017,9(5): 71-74.WEI Yute, DENG Sihua, LI Chenguang, et al. Marc-based finite element analysis of the precast prestressed fabricated concrete frame connections[J]. Journal of Information Technology in Civil Engineering and Architecture, 2017, 9(5): 71-74. 谢娇艳,丁建国. 预制装配整体式框架节点的抗震性能仿真研究[J]. 工程抗震与加固改造,2017,39(5): 34-40.XIE Jiaoyan, DING Jianguo. Study on seismic behavior simulation of the precast assembled integral frame joint[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(5): 34-40. SEIBLE F, LATHAM C T. Analysis and design models for structural concrete bridge deck overlays[J]. Journal of Structural Engineering, 1990, 116(10): 2711-2727. doi: 10.1061/(ASCE)0733-9445(1990)116:10(2711) 赵洁,聂建国. 钢板-混凝土组合加固钢筋混凝土梁的非线性有限元分析[J]. 计算力学学报,2009,26(6): 906-912.ZHAO Jie, NIE Jianguo. Nonlinear finite element analysis of RC beams strengthed usin steel plate-concrete conposite technique[J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 906-912. 陆铁坚,王鹏皓,杨诗龙,等. 预制装配整体式混凝土剪力墙结构墙板节点非线性有限元分析[J]. 铁道科学与工程学报,2015,12(2): 342-347. doi: 10.3969/j.issn.1672-7029.2015.02.019LU Tiejian, WANG Penghao, YANG Shilong, et al. Nonlinear finite element analysis of wall slab joints of precast concrete shear wall structures[J]. Journal of Railway Science and Engineering, 2015, 12(2): 342-347. doi: 10.3969/j.issn.1672-7029.2015.02.019 聂建国,王宇航,樊健生,等. 钢-混凝土组合梁加宽混凝土旧桥技术中组合横梁界面受力性能研究[J]. 土木工程学报,2012,45(3): 99-109.NIE Jianguo, WANG Yuhang, FAN Jiansheng, et al. Mechnical behavior of the interface of composite cross beam in old concrete bridges widened with steel-concrete composite beam[J]. China Civil Engineering Journal, 2012, 45(3): 99-109. MOHAMAD M E, IBRAHIM I S, ABDULLAH R. Finite element modelling of interface shear strength at concrete-to-concrete bond[C]//Proceedings of the APSEC & ACEC 2015. Kuala Lumpur: APSEC & ACEC, 2015: 63-71. MOHAMAD M E, IBRAHIM I S, ABDULLAH R. Finite Element modeling of the interfacial behavior at surface roughness concrete without the projecting steel[J]. International Journal of Advances in Mechanical and Civil Engineering, 2017, 3(4): 125-130. MOHAMAD M E, IBRAHIM I S, ABDULLAH R, et al. Friction and cohesion coefficients of composite concrete-to-concrete bond[J]. Cement & Concrete Composites, 2015, 56: 1-14. HENDY C R, JOHNSON R P. Designer’ guide to en1994-2 Eurocode 4: design of composite steel and structures, part 2: general rules and rules for bridges[S]. London: [s.n.], 2006. HIBBITT M, KARLSSON J, SORENSEN R I. ABA-QUS/Standard user’s manuals[M]. Version 6.13. [S.l.]: Dassault Systèmes Simulia Corp, 2013: 5-22. 廖显东,胡翔,马荣全,等. 高轴压比装配整体式预应力混凝土框架中节点抗震性能试验研究[J]. 建筑结构学报,2016,37(10): 82-89.LIAO Xiandong, HU Xiang, MA Rongquan, et al. Experimental studies on seismic performance of monolithic precast prestressed concrete frame interior connections under high axial compression ratio[J]. Journal of Building Structure, 2016, 37(10): 82-89. 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67.NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in abaqus for static analysis of structures. [J]. Engineering Mechanics, 2013, 30(4): 59-67. 中华人民共和国国家标准. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.