Suppression Solutions to Transient Traction Current Interference in Neutral Zone for Track Circuit
-
摘要: 电力机车及动车组经过含分相区的轨道区段时,暂态牵引电流中包含的谐波电流可能对轨道电路形成干扰并引发故障. 为保障轨道电路在谐波影响下可靠工作,对暂态电流干扰抑制方法进行了研究. 首先,按照欧标中加窗FFT (fast Fourier transformation)方法设计了谐波数据处理流程,给出现场测试数据分析结果,说明对轨道电路形成干扰的原因;然后,以信号载频1 700 Hz和谐波1 750 Hz为实例,从直接抑制谐波干扰的角度简要讨论了基于FPGA (field-programmable gate array)的FIR (finite impulse response)数字滤波器方案和仿真结果,并指出由于信号频带与谐波干扰非常接近,必然以较高阶数和处理延时作为代价;最后,基于谐波干扰的电流源特征和工程可行性,提出并重点阐述了轨道电路发送器和衰耗器的协同优化方案,通过合理配置发送器电平和衰耗器级数,在满足轨道电路调整、分路和机车信号状态的约束条件下,提高对谐波干扰的抑制效果,可将信号干扰比提高6 dB.Abstract: When an electric locomotive or an EMU (electric multiple unit) passes neutral zone in a track section, transient traction current is very likely to cause harmonic interference to track circuit, which may produce failure. To guarantee stable performance of track circuit under the influence of harmonic interference, the suppression methods of transient traction current are studied. Based on the European standards, the windowed FFT (fast Fourier transformation) method is adopted to design the procedure of harmonic data processing, and the analysis results of field test data are utilized to illustrate the interference mechanism for track circuit. Then, taking an example with a 1 700 Hz signal carrier and 1 750 Hz harmonic frequency, the solution and simulation results of FPGA (field-programmable gate array)-based FIR (finite impulse response) digital filter are briefly discussed from the point of direct suppression to harmonic interference. Due to the tiny difference between signal frequency and interference harmonic, the solution has to run at the cost of long response time and high order. Lastly, based on the current source feature of harmonic interference and project feasibility, the collaborative optimization scheme for the transmitter and attenuator of track circuit is proposed. Namely, by optimizing the transmitting level and attenuator step, the suppression to harmonic inference can be improved with an increase of 6 dB in signal-to-interference ratio while the operation states of track circuit are ensured including its clearance, occupancy and cab signaling.
-
表 1 暂态谐波电流及比例
Table 1. Transient harmonic current and its proportion
谐波频率/Hz 电流/A 比例/% 谐波频率/Hz 电流/A 比例/% 1 550 0.149 0.31 1 800 0.040 0.09 1 600 0.085 0.18 1 850 0.058 0.13 1 650 0.128 0.28 1 900 0.100 0.22 1 700 0.063 0.16 1 950 0.149 0.31 1 750 0.295 0.61 2 000 0.048 0.10 表 2 谐波1 750 Hz时测试数据
Table 2. Filed test data in the case of 1 750 Hz harmonic
序号 钢轨 1 电流/A 钢轨 2 电流/A 总电流/A 不平衡度/% 轨面电压/V 视入阻抗/Ω 1 0.425 0.347 0.772 10.01 0.090 1.159 2 0.426 0.347 0.773 10.12 0.048 0.611 3 0.386 0.309 0.695 11.12 0.102 1.313 4 0.463 0.386 0.849 9.09 0.157 2.032 5 0.579 0.463 1.043 11.12 0.143 1.231 表 3 数字滤波器衰减特性
Table 3. Attenuation characteristics of digital filter
项目 频率
/Hz滤波前电压
/mV滤波后电压
/mV相对增益
/dB谐波 1 750 4.25 0.30 信号 1 671 2.05 1.28 18.93 1 700 3.05 2.50 21.29 1 729 2.08 1.52 20.30 表 4 某故障区段发送器电平等级表
Table 4. Transmission voltage levels used in a fault section
等级编号 1 2 3 4 5 电平/V 142.0 126.0 111.0 95.0 79.2 等级编号 6 7 8 9 电平/V 62.8 47.3 31.8 15.8 表 5 不同电平等级对应衰耗参数
Table 5. Attenuation values for different voltage levels
参数 电平等级 1 2 3 4 发送器电压/V 142 126 111 95 衰耗参数范围 116∶(25~50) 116∶(28~53) 116∶(31~56) 116∶(37~60) SIR/dB 17.84~17.98 16.95~17.10 16.03~16.18 14.93~15.08 SIR均值/dB 17.90 17.01 16.10 15.00 表 6 不同电平等级下优化组合仿真数据
Table 6. Simulation data of optimization strategy under different voltage levels
项目 参数 电平等级 1 1 4 5 参数取值 发送器电压/V 142 142 95 79.2 衰耗级数 116:25 116:50 116:37 116:43 轨面干扰电压/V 0.095 0.095 0.095 0.095 分路状态 接收信号残压/V 0.033 6 0.067 0 0.033 4 0.032 7 接收干扰残压/V 0.031 9 0.062 8 0.044 2 0.061 6 接收器残压/V 0.068 6 0.137 2 0.086 9 0.094 3 机车信号 短路电流/A 1.016 3 1.016 3 0.679 9 0.566 9 接收电压/V 0.797 1 0.797 1 0.533 3 0.444 6 衰减 干扰/dB 9.48 3.60 6.65 信号/dB −0.24 −6.23 −0.18 调整状态 接收信号电压/V 0.248 9 0.497 7 0.246 4 0.238 7 接收干扰电压/V 0.031 9 0.062 8 0.044 2 0.061 6 调整SIR/dB 17.84 17.98 14.93 11.76 -
YANG Shiwu, TIAN Jianzhao, XU Hao, et al. Analysis on harmonic current and its impact on track circuit in high speed railway[C]//2016 IEEE International Conference on Intelligent Rail Transportation. Birmingham: IEEE, 2016: 315-321. YANG Shiwu, ZHU Bei, CLIVE Roberts, et al. Feature-based solution to harmonics interference on track circuit in electrified heavy haul railway[C]//2013 IEEE International Conference on Intelligent Rail Transportation. Beijing: IEEE, 2013: 297-301. 李彩霞,杨世武,张炜. 轨道电路不平衡牵引电流干扰测试及分析[J]. 铁道通信信号,2009,45(7): 25-26. doi: 10.3969/j.issn.1000-7458.2009.07.012LI Caixia, YANG Shiwu, ZHANG Wei. Test and analysis of non-balance electric current interfere in track circuit[J]. Railway Signalling & Communication, 2009, 45(7): 25-26. doi: 10.3969/j.issn.1000-7458.2009.07.012 LI Jianqing, YANG Shiwu, REN Guoqiao. Research on anti-interference from heavy traction current to the signaling system of Datong-Qinhuangdao railway line[C]//Proceedings of 9th International Heavy Haul Conference. Shanghai: China Railway Publishing House, 2009: 734-748. British Standard Institution. Railway applications-compatibility between rolling stock and train detection systems-part2: compatibility with track circuits: CLC/TS50238-2.2015[S]. London: British Standards Institution, 2015. 中华人民共和国铁道部. 铁道信号电气设备电磁兼容性试验及其限值: TB/T 3073[S]. 北京: 中国铁道出版社, 2003. ŽUPAN A, TEKLIC A T, FILIPOVIC-GRCIC B. Modeling of 25 kV electric railway system for power quality studies[C]//IEEE EUROCON Conference. Zagreb: IEEE, 2013: 844-849. FATEN O, BEN AMMAR F. Compensation of harmonic disturbances in the tunisian SAHEL railway supply system[C]//1st International Conference on Electrical Engineering and Software Applications. Hammamet: IEEE, 2013: 574-578. JIAO Jinghai, WEN Yinghong, LI Meng, et al. Research on vehicle onboard measurement system of traction harmonic current for analyzing interference on track circuit[C]//6th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies. Shanghai: IEEE, 2015: 475-478. 王梓丞,郭进,张亚东,等. 基于FDTD接口方法的ZPW-2000轨道电路暂态分析[J]. 西南交通大学学报,2019,54(1): 196-201, 218. doi: 10.3969/j.issn.1673-4440.2016.04.024WANG Zicheng, GUO Jin, ZHANG Yadong, et al. Transient analysis of ZPW-2000 track circuit based on FDTD interface method[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 196-201, 218. doi: 10.3969/j.issn.1673-4440.2016.04.024 许童羽,程浩忠,周玉宏,等. 基于LabVIEW的配电网谐波在线监测与分析系统[J]. 电力系统保护与控制,2008,36(1): 63-66. doi: 10.3969/j.issn.1674-3415.2008.01.014XU Tongyu, CHENG Haozhong, ZHOU Yuhong, et al. A LabVIEW-based system for distribution network harmonics monitoring and analysing[J]. Power System Protection and Control, 2008, 36(1): 63-66. doi: 10.3969/j.issn.1674-3415.2008.01.014 英超. 基于加窗插值FFT的电力系统谐波检测算法研究[D]. 锦州: 辽宁工业大学, 2015. PHAM V L, WONG K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms[J]. IEEE Proceedings-Generation,Transmission and Distribution, 1999, 146(3): 249-254. doi: 10.1049/ip-gtd:19990316 毛广智,解学书. 无绝缘轨道电路系统的图形建模[J]. 计算机工程,2004,30(15): 146-148. doi: 10.3969/j.issn.1000-3428.2004.15.058MAO Guangzhi, XIE Xueshu. Graphic modeling of jointless track circuit[J]. Computer Engineering, 2004, 30(15): 146-148. doi: 10.3969/j.issn.1000-3428.2004.15.058 RUDEZ U, MIHALIC R. Sympathetic inrush current phenomenon with loaded transformers[J]. Electric Power Systems Research, 2016, 138: 3-10. doi: 10.1016/j.jpgr.2015.12.011 何垚. 高速铁路车网谐波特性研究[D]. 成都: 西南交通大学, 2013. HOBBS I. High speed power[J]. Power Engineering, 2007, 21(2): 32-35. doi: 10.1049/pe:20070204 杨少兵,吴命利. 基于实测数据的高速动车组谐波分布特性与概率模型研究[J]. 铁道学报,2010,32(3): 33-38. doi: 10.3969/j.issn.1001-8360.2010.03.006YANG Shaobing. WU Mingli. Study on harmonic distribution characteristics and probability model of high speed emu based on measured data[J]. Journal of the China Railway Society, 2010, 32(3): 33-38. doi: 10.3969/j.issn.1001-8360.2010.03.006 王纪坤. ZPW-2000R移频自动闭塞系统测试系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. 张海洋,许海平,方程,等. 基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法[J]. 中国电机工程学报,2018,38(4): 1222-1231,1299.ZHANG Haiyang, XU Haiping, FANG Cheng, et al. Torque ripple suppression method of direct-drive permanent magnet synchronous motor based on resonant digital filter[J]. Proceedings of the CSEE, 2018, 38(4): 1222-1231,1299. 杨世武. 铁路信号电磁兼容技术[M]. 北京: 中国铁道出版社, 2010: 80-86. 中华人民共和国铁道部. 铁路信号维护规则技术标准I[M]. 2版. 北京: 中国铁道出版社, 2008: 92-93 刘家良. 移频轨道电路邻线干扰与迂回电路研究[D]. 北京: 北京交通大学, 2015.