• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于变频控制策略的同相供电装置可靠性优化方法

陈民武 田航 宋雅琳 陈玲

陈民武, 田航, 宋雅琳, 陈玲. 基于变频控制策略的同相供电装置可靠性优化方法[J]. 西南交通大学学报, 2020, 55(1): 9-17. doi: 10.3969/j.issn.0258-2724.20180668
引用本文: 陈民武, 田航, 宋雅琳, 陈玲. 基于变频控制策略的同相供电装置可靠性优化方法[J]. 西南交通大学学报, 2020, 55(1): 9-17. doi: 10.3969/j.issn.0258-2724.20180668
CHEN Minwu, TIAN Hang, SONG Yalin, CHEN Ling. Reliability Optimization of Co-phase Power Supply Device Based on Frequency Conversion Control Strategy[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 9-17. doi: 10.3969/j.issn.0258-2724.20180668
Citation: CHEN Minwu, TIAN Hang, SONG Yalin, CHEN Ling. Reliability Optimization of Co-phase Power Supply Device Based on Frequency Conversion Control Strategy[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 9-17. doi: 10.3969/j.issn.0258-2724.20180668

基于变频控制策略的同相供电装置可靠性优化方法

doi: 10.3969/j.issn.0258-2724.20180668
基金项目: 国家自然科学基金(51877182);四川省科技计划(2018FZ0107)
详细信息
    作者简介:

    陈民武(1983—),男,博士,副教授,研究方向为牵引供电理论与新技术,电能质量预测、评估与控制技术等,E-mail:chenminwu@home.swjtu.edu.cn

  • 中图分类号: V221.3

Reliability Optimization of Co-phase Power Supply Device Based on Frequency Conversion Control Strategy

  • 摘要: 同相供电技术能有效解决牵引供电系统普遍存在的过分相问题和电能质量问题. 为了保障同相供电系统的安全可靠运行,作为系统的核心设备,同相供电装置的可靠性优化研究至关重要. 针对同相供电装置特殊的变流器拓扑结构,建立可靠性评估模型,分析了牵引负荷特性及主要电气参数对装置可靠性的影响机理;建立以功率模块失效率最低为目标的变频控制优化模型,采用遗传-粒子群混合算法,得到了最优变频控制策略. 研究表明:改变不同负荷区段内变流器的开关频率,可以有效降低功率元件失效率. 最后以山西中南部铁路应用的工程样机为例,基于实测数据和对比分析,表明在变频控制策略下,装置寿命可增加20.90%,可靠度增长率最大可达到54.17%,证明了变频控制策略可以有效提高装置可靠性.

     

  • 图 1  同相供电装置主电路拓扑

    Figure 1.  Primary circuit topology of co-phase power supply device

    图 2  功率循环失效周期数与Tjm和ΔTj的关系

    Figure 2.  Relationship between number of power cycle failure cycles and ΔTj with different Tjm

    图 3  IGBT模块热等效电路

    Figure 3.  Thermal equivalent circuit of IGBT module

    图 4  牵引负荷功率因数与功率元件失效率之间的关系

    Figure 4.  Relationship between traction load power factor and power component failure rate

    图 5  开关频率与功率元件失效率的关系

    Figure 5.  Relationship between switching frequency andpower component failure rate

    图 6  IGBT模块失效率最小优化模型GAPSO算法流程

    Figure 6.  GAPSO algorithm flow for optimization model of minimizing IGBT module failure rate

    图 7  实测牵引负荷

    Figure 7.  Measured traction load

    图 8  IGBT模块适应度曲线

    Figure 8.  Adaptability curve of IGBT module

    图 9  牵引侧IGBT模块功率损耗

    Figure 9.  IGBT module power loss for traction side

    图 10  优化前牵引侧失效率与平均结温和结温波动的关系

    Figure 10.  Relationships between failure rate of traction side,average junction temperature and junction temperature fluctuation before optimization

    图 11  优化后牵引侧失效率与平均结温和结温波动的关系

    Figure 11.  Relationship between failure rate of traction side,average junction temperature and junction temperature fluctuation after optimization

    图 12  不同策略下同相供电装置可靠度曲线

    Figure 12.  Reliability curves of co-phase power supply device with different strategies

    表  1  同相供电装置参数

    Table  1.   Parameters of co-phase power supply device

    参数数值
    额定容量/ (MV•A) 5
    电网侧输入额定电压/ kV 10
    牵引侧输出额定电压/ V 680
    电网侧开关频率/ Hz 400
    牵引侧开关频率/ Hz 1 500
    下载: 导出CSV

    表  2  IGBT模块参数

    Table  2.   Parameters of IGBT module

    项目电网侧牵引侧
    型号 SKiiP 1513 GB172-3DL V3 SKiiP 2403 GB172-4DL V3
    fsw_lim/Hz 9 000 7 000
    ton+off/μs 2.8 2.8
    Esw_T/mJ 863 780
    Esw_D/mJ 128 144
    下载: 导出CSV

    表  3  GAPSO算法优化结果

    Table  3.   GAPSO algorithm optimization results

    元件Ich/Afsw_ch/Hz变频优化前变频优化后
    max Tjm/℃max ΔTj/℃IGBT模块失效率/Fitmax Tjm/℃max ΔTj/℃IGBT模块失效率/Fit
    电网侧 IGBT 365 1 096 92.52 38.25 442.21 92.52 36.76 309.80
    FWD 108.93 50.14 108.83 48.55
    牵引侧 IGBT 366 2 652 113.47 52.64 1 127.48 113.47 50.45 705.27
    FWD 111.91 51.46 111.91 49.18
    下载: 导出CSV

    表  4  优化后元件的失效率

    Table  4.   Optimized failure rate of each component Fit

    元件n
    131415
    电网侧IGBT72.92 × 442.17 × 435.36 × 4
    FWD342.38 × 4293.61 × 4274.44 × 4
    牵引侧IGBT1 141.30 × 4546.46 × 4383.18 × 4
    FWD951.55 × 4458.38 × 4322.09 × 4
    直流支撑电容268.04 × 12221.37 × 12186.80 × 12
    串联电抗器51.00 × 1
    控制底板150.00 × 2
    总失效率13 600.088 369.926 652.88
    下载: 导出CSV
  • 李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001

    LI Qunzhan. On new generation traction power supply system and its key technologies for electrification railway[J]. Journal Southwest Jiaotong University, 2014, 49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001
    夏焰坤,李群湛,邹大云. 一种基于有源滤波器的同相牵引供电方案[J]. 电网技术,2010,34(10): 131-134.

    XIA Yankun, LI Qunzhan, ZOU Dayun. A co-phase traction power supply system based on active power filter[J]. Power System Technology, 2010, 34(10): 131-134.
    YANG S, BRYANT A, MAWBY P, et al. An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 3151-3157.
    周雒维,吴军科,杜雄,等. 功率变流器的可靠性研究现状及展望[J]. 电源学报,2013,1(1): 1-15.

    ZHOU Luowei, WU Junke, DU Xiong, et al. Status and outlook of power converter’s reliability research[J]. Journal of Power Supply, 2013, 1(1): 1-15.
    杜雄,李高显,李腾飞,等. 一种用于提高风电变流器中功率器件寿命的混合空间矢量调制方法[J]. 中国电机工程学报,2015,35(19): 5003-5012.

    DU Xiong, LI Gaoxian, LI Tengfei, et al. A hybrid modulation method for improving the lifetime of power modules in the wind power converter[J]. Proceeding of CSEE, 2015, 35(19): 5003-5012.
    杨珍贵,杜雄,孙鹏菊,等. 风电全功率变流器参数对可靠性的影响分析[J]. 电工技术学报,2015,30(16): 137-145. doi: 10.3969/j.issn.1000-6753.2015.16.018

    YANG Zhengui, DU Xiong, SUN Pengju, et al. Analysis of effect of the converter parameters on full-rated wind power converters reliability[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 137-145. doi: 10.3969/j.issn.1000-6753.2015.16.018
    吴军科.非平稳工况变流器IGBT模块结温平滑控制研究[D]. 重庆: 重庆大学, 2015.
    刘飞,解绍锋,侯东光,等. 基于器件结温的同相补偿变流器可靠性评估[J]. 电力自动化设备,2018,38(1): 149-155.

    LIU Fei, XIE Shaofeng, HOU Dongguang, et al. Reliability evaluation of co-phase compensation converter based on junction temperature of devices[J]. Electric Power Automation Equipment, 2018, 38(1): 149-155.
    陈民武,宋雅琳,刘琛,等. 同相供电系统潮流控制器可靠性建模与冗余分析[J]. 电网技术,2017,41(12): 4022-4029.

    CHEN Minwu, SONG Yalin, LIU Chen, et al. Reliability modeling and redundancy analysis of power flow controller in co-phase power supply system[J]. Power System Technology, 2017, 41(12): 4022-4029.
    CHEN Minwu, LI Qunzhan, CLIVE R, et al. Modelling and performance analysis of advanced combined co-phase traction power supply system in electrified railway[J]. IET Generation Transmission and Distribution, 2016, 10(4): 906-916. doi: 10.1049/iet-gtd.2015.0513
    鲁宗相,刘文华,王仲鸿. 基于k/n (G)模型的 STATCOM 装置可靠性分析[J]. 中国电机工程学报,2007,27(13): 12-17.

    LU Zhongxiang, LIU Wenhua, WANG Zhonghong. Reliability evaluation of STATCOM based on the k-out-of-n: G model[J]. Proceedings of the CSEE, 2007, 27(13): 12-17.
    陈民武,蒋汶兵,王旭光,等. 高速铁路新型同相贯通供电方案及其仿真研究[J]. 铁道学报,2016,38(1): 28-34. doi: 10.3969/j.issn.1001-8360.2016.01.005

    CHEN Minwu, JIANG Wenbing, WANG Xuguang, et al. Study on scheme and simulation of new co-phase continuous traction power supply system for high-speed railway[J]. Journal of the China Railway Society, 2016, 38(1): 28-34. doi: 10.3969/j.issn.1001-8360.2016.01.005
    D’ARCO S, UNDELAND T M, BOHLLANDER M, et al. A simplified algorithm for predicting power cycling lifetime in direct drive wind power systems[C]// 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), Chemnitz: IEEE, 2012: 1-6
    WEI Lixiang, KERKMAN R J, LUKASZEWSK R A. Evaluation of power semiconductors power cycling capabilities for adjustable speed drive[C]// IEEE Industry Applications Society (ISA) Annual Meeting. Alberta: [s.n.], 2008: 1-10.
    潘略武,徐政,张静,等. 电压源换流器型直流输电换流器损耗分析[J]. 中国电机工程学报,2008,28(21): 7-14.

    PAN Luewu, XU Zheng, ZHANG Jing, et al. Dissipation analysis of VSC-HVDC converter[J]. Proceedings of the CSEE, 2008, 28(21): 7-14.
    宋雅琳. 同相供电装置可靠性评估及改善措施研究[D]. 成都: 西南交通大学, 2018.
    张丽艳,李群湛,朱毅. 新建电气化铁路牵引负荷预测[J]. 西南交通大学学报,2016,51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020

    ZHANG Liyan, LI Qunzhan, ZHU Yi. Prediction of traction load for new electrified railway[J]. Journal Southwest Jiaotong University, 2016, 51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020
    韩旭东,王斌,高仕斌,等. 基于车网耦合的高速铁路AT供电系统谐振特性[J]. 西南交通大学学报,2014,49(4): 582-589. doi: 10.3969/j.issn.0258-2724.2014.04.004

    HAN Xudong, WANG Bin, GAO Shibin, et al. Harmonic resonance of AT power supply system of high speed railway based on train-network coupling[J]. Journal Southwest Jiaotong University, 2014, 49(4): 582-589. doi: 10.3969/j.issn.0258-2724.2014.04.004
    TSENG H K, KAO S W, CHENG F Y, et al. Analytical solution to harmonic characteristics of three-phase PWM inverter using 3-D modulation model[J]. Electric Power Components and Systems, 2004, 32(11): 1105-1120. doi: 10.1080/15325000490441381
    张庭场,耿光飞. 基于改进粒子群算法的中压配电网无功优化[J]. 电网技术,2012,36(2): 158-162.

    ZHANG Tingchang, GENG Guangfei. Reactive power optimization for medium voltage distribution network based on improved particle swarm optimization[J]. Power System Technology, 2012, 36(2): 158-162.
    刘琛,陈民武,宋雅琳,等. 高速铁路接触网系统风险评估与维修计划优化[J]. 铁道科学与工程学报,2017,14(2): 205-213. doi: 10.3969/j.issn.1672-7029.2017.02.001

    LIU Chen, CHEN Minwu, SONG Yalin, et al. Research on optimization of maintenance plan for high-speed railway catenary system based on risk assessment[J]. Journal of Railway Science and Engineering, 2017, 14(2): 205-213. doi: 10.3969/j.issn.1672-7029.2017.02.001
    唐斌.同相供电补偿变流器[D]. 成都: 西南交通大学, 2016.
    ARENDT W, ULRICH N, WERNER T, et al. Application manual power semiconductors[EB/OL]. (2015-10-28)[2017-12-15]. http://www.semikron.com
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  265
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 修回日期:  2018-12-14
  • 网络出版日期:  2018-12-21
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回