Seismic Damage Evolution Simulation of Long-Span Deck Steel Truss Arch Bridge
-
摘要: 为评估大跨度钢拱桥在多维地震作用下的损伤状态,以一座铁路上承式钢桁架拱桥为研究对象,首先借助OpenSEES平台建立桥梁弹塑性纤维单元模型;接着选取“双参数”损伤指标和应变指标进行损伤评价;最后通过增量动力分析,从构件和全桥两个层面进行损伤评估,并对比两种指标对桥梁主要构件(钢管、钢管混凝土、钢筋混凝土)的适用性. 研究结果表明:基于变形和能量的双参数损伤指标比应变指标的评价结果会严重1~2个等级;相比于地震波纵向作用,大跨度钢桁架拱桥在横向地震作用时损伤更小,在峰值加速度(PGA)为1.5g时全桥仍处于轻微损伤状态;3种类型构件中,钢管构件损伤数量较多但是损伤程度轻,钢管混凝土构件(拱脚)损伤较早但是损伤程度轻,钢筋混凝土构件(交界墩)损伤最为严重,在抗震设计时,应对相应位置予以重视.Abstract: To evaluate the damage state of a long-span steel arch bridge under multi-dimensional earthquake loadings, a deck steel truss arch bridge was studied. A bridge elastoplastic fiber element model was established by OpenSEES code. Two damage index, i.e., strain and two-parameter damage index were selected for damage evaluation. The damage assessment of both members and the whole bridge were obtained by incremental dynamic analysis (IDA). Moreover, the applicability of two damage index on the main members of the bridge (steel pipe, concrete-filled steel tube, and reinforced concrete member) was compared. The results show that the assessment result by the two-parameter damage index based on deformation and energy may lead to 1−2 damage assessment levels worse than by strain damage index. Less damage is caused when the identical earthquake loading is input in transverse direction than longitudinal direction. The full bridge is still in a slightly damaged state when the peak ground acceleration (PGA) is 1.5g. Among three types of members, the damage quantity of steel tube members is large but damage state is slight. The damage of concrete-filled steel tubular members (arch feet) comes early but damage state is slight. The damage state of reinforced concrete members (joint balance pier) is the most serious. Attention should be paid to the corresponding structural locations in seismic design.
-
Key words:
- seismic response /
- arch bridges /
- damage index /
- incremental dynamic analysis /
- strain
-
表 1 材料参数
Table 1. Material parameters
项目 fpc/MPa epsc0 fpcu/MPa epsU ft/MPa Ets/MPa 下拱脚 −61.58 −0.0036 −31.24 −0.004 6.16 3079 上拱脚 −50.32 −0.0035 −15.42 −0.004 5.03 2516 交界墩横梁 −23.85 −0.0020 −4.77 −0.004 3.01 2340 交界墩冒梁 −23.40 −0.0020 −4.68 −0.004 3.01 2340 交界墩立柱 −24.28 −0.0021 −4.86 −0.004 3.01 2340 表 2 自振周期和振型
Table 2. Fundamental periods and modes
振型 频率/Hz 周期/s 振型描述 T1 0.28 3.61 拱梁一阶正对称横弯 T2 0.44 2.26 拱梁一阶反对称横弯 T5 0.91 1.10 左侧交界墩纵向弯曲 T14 1.25 0.80 拱上墩纵向弯曲 T30 2.16 0.46 左侧交界墩扭转 表 3 地震损伤等级划分
Table 3. Classification of seismic damages
损伤等级 钢管构件应变指标 钢筋混凝土构件 钢管混凝土构件钢管应变指标 钢管混凝土与钢筋混凝土构件双参数指标 混凝土应变指标 钢筋应变指标 基本完好 ε ≤ εy ε ≤ 0.0020 ε ≤ 0.00194 ε ≤ 0.00189 (0, 0.2] 轻度损伤 εy < ε ≤ 2.0εy (0.0020, 0.0035] (0.00194, 0.01000] (0.00189, 0.01000] (0.2, 0.4] 中等损伤 2.0εy < ε ≤ 8.4εy (0.0035, 0.0050] (0.01000, 0.03000] (0.01000, 0.03000] (0.4, 0.8] 严重损伤 ε > 8.4εy (0.0050, 0.0080] (0.03000, 0.05000] (0.03000, 0.05000] (0.8, 1.0] 倒塌 — ε > 0.0080 ε > 0.05000 ε > 0.05000 D > 1.0 表 4 全桥损伤指数
Table 4. Damage index of bridge
PGA/(×g) 纵向 横向 双向 损伤
指数损伤
状态损伤
指数损伤
状态损伤
指数损伤
状态0.5 0.02 − 0.07 − 0.16 − 0.6 0.11 − 0.07 − 0.25 轻微 0.7 0.13 − 0.12 − 0.34 轻微 0.8 0.21 − 0.17 − 0.34 轻微 0.9 0.28 轻微 0.17 − 0.48 中等 1.0 0.33 轻微 0.17 − 0.56 中等 1.1 0.33 轻微 0.17 − 0.58 中等 1.2 0.39 轻微 0.23 轻微 0.71 中等 1.3 0.4 轻微 0.23 轻微 0.71 中等 1.4 0.72 中等 0.37 轻微 0.73 中等 1.5 0.85 严重 0.37 轻微 0.83 严重 -
谢旭,唐站站,胡欣科,等. 纤维模型在钢拱桥抗震设计中的适用性研究[J]. 中国公路学报,2015,28(2): 33-42. doi: 10.3969/j.issn.1001-7372.2015.02.005XIE Xu, TANG Zhanzhan, HU Xinke, et al. Study on applicability of fiber model in seismic design for steel arch bridge[J]. China Journal of Highway and Transport, 2015, 28(2): 33-42. doi: 10.3969/j.issn.1001-7372.2015.02.005 LIANG C Y, CHEN A. A method for examining the seismic performance of steel arch deck bridges[J]. Frontiers of Architecture and Civil Engineering in China, 2010, 4(3): 311-320. doi: 10.1007/s11709-010-0080-8 USAMI T, GE H. A performance-based seismic design methodology for steel bridge systems[J]. Journal of Earthquake and Tsunami, 2009, 3(3): 175-193. doi: 10.1142/S179343110900055X TANG Z, XIE X, WANG T, et al. Study on FE models in elasto-plastic seismic performance evaluation of steel arch bridge[J]. Journal of Constructional Steel Research, 2015, 113: 209-220. doi: 10.1016/j.jcsr.2015.06.009 谢开仲,吕文高,覃乐勤,等. 钢管混凝土拱桥地震破坏评估研究[J]. 中国公路学报,2012,25(2): 53-59. doi: 10.3969/j.issn.1001-7372.2012.02.009XIE Kaizhong, LU Wengao, QIN Leqin, et al. Research on seismic damage evaluation of CFST arch bridges[J]. China Journal of Highway and Transport, 2012, 25(2): 53-59. doi: 10.3969/j.issn.1001-7372.2012.02.009 中国钢铁工业协会. 桥梁用结构钢: GB/T 714—2015[S]. 北京: 中国国家标准化管理委员会, 2015. 赵金钢,杜斌,占玉林,等. OpenSees中混凝土本构模型用于模拟结构滞回性能的对比[J]. 桂林理工大学学报,2017,37(1): 59-67. doi: 10.3969/j.issn.1674-9057.2017.01.008ZHAO Jingang, DU Bin, ZHAN Yulin, et al. Comparison of constitutive concrete models in OpenSees for hysteretic behavior of structures[J]. Journal of Guilin University of Technology, 2017, 37(1): 59-67. doi: 10.3969/j.issn.1674-9057.2017.01.008 陈建伟,边瑾靓,苏幼坡,等. 应用OpenSEES模拟方钢管混凝土柱的抗震性能[J]. 世界地震工程,2015,31(3): 71-77.CHEN Jianwei, BIAN Jinliang, SU Youpo, et al. Application of OpenSEES on calculating lateral force-displacement hysteretic curves of concrete-filled rectangular steel tubular columns[J]. World Earthquake Engineering, 2015, 31(3): 71-77. PARK-ANG Y J, ANG A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722-739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722) 过镇海. 钢筋混凝土原理[M]. 3版. 北京: 清华大学出版社, 2013: 312-313. 郭蓉,王铁成,赵少伟,等. 方钢管混凝土柱的地震损伤模型[J]. 河北农业大学学报,2007,30(3): 109-112. doi: 10.3969/j.issn.1000-1573.2007.03.027GUO Rong, WANG Tiecheng, ZHAO Shaowei, et al. Seismic damage model of concrete- filled rectangular tubular column[J]. Journal of Agricultural University of Hebei, 2007, 30(3): 109-112. doi: 10.3969/j.issn.1000-1573.2007.03.027 周长东,田苗旺,张许,等. 考虑多维地震作用的高耸钢筋混凝土烟囱结构易损性分析[J]. 土木工程学报,2017,50(3): 54-64.ZHOU Changdong, TIAN Miaowang, ZHANG Xu, et al. Seismic fragility analysis for high-rise RC chimney considering multi-dimensional seismic actions[J]. China Civil Engineering Journal, 2017, 50(3): 54-64. 谷音,卓卫东. 基于IDA和纤维模型的高墩大跨连续刚构桥梁地震反应分析[J]. 土木工程与管理学报,2011,28(3): 235-240. doi: 10.3969/j.issn.2095-0985.2011.03.053GU Yin, ZHOU Weidong. Study on seismic vulnerability of long-span continuous rigid frame bridge with high pier[J]. Journal of Civil Engineering and Management, 2011, 28(3): 235-240. doi: 10.3969/j.issn.2095-0985.2011.03.053 刘震. 中承式钢管混凝土拱桥地震易损性分析[J]. 公路交通科技,2015,32(8): 72-79,88. doi: 10.3969/j.issn.1002-0268.2015.08.013LIU Zhen. Analysis on seismic fragility of half-through CFST arch bridge[J]. Journal of Highway and Transportation Research and Development, 2015, 32(8): 72-79,88. doi: 10.3969/j.issn.1002-0268.2015.08.013 中国地震局. 中国地震烈度表: GB/T 17742—1999[S]. 北京: 中国国家标准化管理委员会, 2008.