Force Characteristics of Longitudinal Joints of Shield Tunnel under Seismic Action
-
摘要: 实际工程中,盾构隧道纵向接头是结构受力和变形的薄弱部位,针对盾构隧道纵向接头细部构造在地震作用下的受力特征,提出了一套由整体到局部的数值分析流程.首先建立基于纵向等效刚度梁的三维地层-结构时程分析模型,然后以该模型计算得到的纵向内力极值作为盾构隧道整环三维分析模型的外荷载,获取隧道最不利区域边界力,最后将边界力施加在盾构隧道纵向接头局部精细化分析模型之上,分析纵向接头细部构造受力特征;并以某综合管廊工程为背景对该方法进行具体阐述和讨论. 研究结果表明:地震波横向激励时,盾构隧道纵向以往复的水平弯曲为主,而纵向激励时,则以往复的竖向弯曲和纵向拉压为主;在纵向张开量最大的局部区域,不论是轴向拉力工况还是纵向水平弯矩工况,该局部区域都处于受拉状态,两种工况对该局部区域受力模式不产生本质影响;当盾构隧道纵向最大张开量的局部区域受拉时,最大拉应力区均位于管片内侧手孔部位,最大压应力区则围绕螺栓孔成环形分布.Abstract: The longitudinal joints of shield tunnels are the weak parts of the structure when bearing loads and deformations in practical engineering. A numerical analysis method which analyzes from the whole to the local was put forward based on the mechanical characteristics of the longitudinal joints under seismic action. According to the equivalent longitudinal stiffness beam theory, the 3D time-history analysis model of stratum-structure was established to obtain the extreme value of structural longitudinal internal force, the extreme value was then taken as the external load which was applied on the entire 3D analysis model of the whole ring to obtain the boundary force of the most unfavorable region of shield tunnels. The mechanical characteristics of the longitudinal joints were analyzed by applying the boundary force to the local refined model of the longitudinal joints. The method was discussed by an integrated corridor project specifically. The results show that the shield tunnels mainly suffer cyclic horizontal bending in the longitudinal direction when it is under the transverse seismic excitation, the cyclic vertical bending and longitudinal tension of the tunnel are notable when the seismic wave is excited longitudinally. The local area with the largest longitudinal opening is always under tension whether subjected to axial tension or longitudinal horizontal bending moment, which means that the influence of these two working conditions on the force pattern of the local area are essentially the same. When the local area with the largest longitudinal opening is under tension, the maximum tensile stress area is located at the hand hole on the inside of the segment, and the maximum compressive stress area is distributed around the bolt hole in a ring shape.
-
表 1 地层物理力学参数
Table 1. Physical and mechanical parameters of formation
地层
编号名称 密度/
(kg•m−3)泊松比 动剪切
模量/MPa动弹性
模量/MPa① 淤泥 1 800 0.42 72.7 96.7 ② 粉质黏土 1 810 0.40 122.9 230.0 ③ 粉土 1 820 0.32 182.6 350.0 ④ 粉细砂 1 960 0.30 211.3 492.0 ⑤ 细砂 1 980 0.28 197.0 573.0 ⑥ 中粗砂 2 020 0.25 460.0 614.0 表 2 计算工况
Table 2. Calculation conditions
工况 地震动 PGA/(× g) 质点振动方向 1 设防 0.122 沿模型横向(y) 2 罕遇 0.192 沿模型横向(y) 3 设防 0.122 沿模型纵向(x) 4 罕遇 0.192 沿模型纵向(x) 表 3 各工况纵向内力极值
Table 3. Extremum of longitudinal internal force under different conditions
工况 轴力/MN 水平弯矩/(MN•m) 竖直弯矩/(MN•m) 最大值 最小值 最大值 最小值 最大值 最小值 1 5.57×10−7 −4.14×10−7 4.68×10−5 −2.20×10−5 1.36 −2.33 2 1.04×10−6 −6.55×10−7 4.54×10−8 −4.13×10−8 2.16 −4.51 3 1.02 −1.50 1.19 −1.33 4.48×10−6 −6.7×10−6 4 1.68 −2.56 5.71×10−3 −1.05×10−2 7.05×10−6 −1.2×10−5 表 4 整环三维模型计算工况
Table 4. Calculation conditions of the whole three-dimensional model
工况
编号作用
类别量值/
MN工况
编号作用
类别量值/
(MN•m)F1 轴向
拉力0.5 M1 纵向水平
弯矩3.0 F2 1.0 M2 3.5 F3 1.5 M3 4.0 F4 2.0 M4 4.5 F5 2.5 M5 5.0 表 5 研究区域边界力方向
Table 5. Direction of the boundary force in the study area
工况
编号作用
类别等效量值/
MN工况
编号作用
类别等效量值/
(MN•m)DF1 轴向
拉力0.5 DM1 纵向水平
弯矩3.0 DF2 1.0 DM2 3.5 DF3 1.5 DM3 4.0 DF4 2.0 DM4 4.5 DF5 2.5 DM5 5.0 表 6 各工况下螺栓Von Mises应力极值
Table 6. Von Mises stress extreme value of bolt in various working conditions
MPa 工况 最小值 最大值 工况 最小值 最大值 DF1 2.81 14.73 DM1 4.53 24.02 DF2 5.52 29.45 DM2 5.26 28.04 DF3 8.16 44.18 DM3 5.99 32.02 DF4 10.72 58.81 DM4 6.71 36.06 DF5 13.26 73.59 DM5 7.43 40.90 -
何川,封坤. 大型水下盾构隧道结构研究现状与展望[J]. 西南交通大学学报,2011,46(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001HE Chuan, FENG Kun. Research status and prospect of large underwater shield tunnel structures[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001 志波由紀夫, 川島一彦, 大日方尚巳, 等. シールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法[C]//土木学会論文集. 东京: [s.n.], 1988: 319-327. 小泉淳, 村上博智. シ-ルドトンネルの軸方向特性のモデル化について[C]//土木学会論文集. 东京: [s.n.], 1988: 79-88. 叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33(12): 1870-1876.YE Fei, HE Chuan, ZHU Hehua, et al. Longitudinal equivalent rigidity of shield tunnel considering transverse characteristics[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1870-1876. 邵润萌, 雷扬. 基于反应位移法的盾构隧道纵向抗震分析[J]. 土木工程学报, 2013, 46 (增刊2): 260-265.SHAO Runmeng, LEI Yang. Longitudinal anti-seismicanalysis of shield tunnel based on response deformati-on method[J]. China Civil Engineering Journal, 2013, 46 (S2): 260-265. 王维,何川,耿萍,等. 非均匀地层盾构隧道纵向抗震分析[J]. 现代隧道技术,2016,53(6): 73-79.WANG Wei, HE Chuan, GENG Ping, et al. Longitudi-nal aseismic analysis of shield tunnels in inhomogeneous ground[J]. Modern Tunneling Technology, 2016, 53(6): 73-79. 张景,何川,耿萍,等. 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报,2017,36(1): 68-77.ZHANG Jing, HE Chuan, GENG Ping, et al. Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 68-77. 耿萍,何川,晏启祥. 盾构隧道纵向地震响应分析[J]. 西南交通大学学报,2007,42(3): 283-287. doi: 10.3969/j.issn.0258-2724.2007.03.006GENG Ping, HE Chuan, YAN Qixiang. Analysis of longitudinal seismic response of shield tunnel[J]. Journal of Southwest Jiaotong University, 2007, 42(3): 283-287. doi: 10.3969/j.issn.0258-2724.2007.03.006 郭毅之,金先龙,丁峻宏,等. 并行数值仿真技术在盾构隧道地震响应分析中的应用[J]. 应用基础与工程科学学报,2005,13(1): 43-50. doi: 10.3969/j.issn.1005-0930.2005.01.006GUO Yizhi, JIN Xianlong, DING Junhong, et al. Parallel numerical simulation techniques in seismic response analysis of shield tunnel[J]. Journal of Applied Basic and Engineering Science, 2005, 13(1): 43-50. doi: 10.3969/j.issn.1005-0930.2005.01.006 丁峻宏,金先龙,郭毅之,等. 盾构隧道地震响应的三维数值模拟方法及应用[J]. 岩石力学与工程学报,2006,25(7): 1430-1436. doi: 10.3321/j.issn:1000-6915.2006.07.020DING Junhong, JIN Xianlong, GUO Yizhi, et al. Three-dimensional numerical simulation method and its application to seismic response of shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1430-1436. doi: 10.3321/j.issn:1000-6915.2006.07.020 王新. 大型盾构隧道地震动力响应数值模拟方法及应用[D]. 上海: 上海交通大学, 2011. 王飞. 盾构隧道等效建模方法及地震响应分析[D]. 上海: 上海交通大学, 2012. 禹海涛,袁勇,顾玉亮,等. 非一致激励下长距离输水隧道地震响应分析[J]. 水利学报,2013,44(6): 718-725.YU Haitao, YUAN Yong, GU Yuliang, et al. Effect of non-uniform excitation on seismic response of long-distance water-conveyance tunnel[J]. Journal of Hydraulic Engineering, 2013, 44(6): 718-725. 耿萍, 何川, 晏启祥. 水下盾构隧道抗震设计分析方法适应性研究[J]. 岩石力学与工程学报, 2007(增刊2): 3625-3630.GENG Ping, HE Chuan, YAN Qixiang. Adaptability of seismic design analysis method for underwater shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 3625-3630. 日本土木学会. 盾构隧道管片设计——从容许应力设计法到极限状态设计法[M]. 官林星译. 北京: 中国建筑工业出版社, 2012: 66-72. 赵武胜,何先志,陈卫忠,等. 盾构隧道地震响应分析方法及工程应用[J]. 岩土力学,2012,33(8): 2415-2421. doi: 10.3969/j.issn.1000-7598.2012.08.027ZHAO Wusheng, HE Xianzhi, CHEN Weizhong, et al. Analysis of seismic damage of segments and joints at the junction of shield tunnel[J]. Rock and Soil Mechanics, 2012, 33(8): 2415-2421. doi: 10.3969/j.issn.1000-7598.2012.08.027