• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

自激气动力有理函数系数的直接识别算法

伍波 王骑 廖海黎 李郁林

伍波, 王骑, 廖海黎, 李郁林. 自激气动力有理函数系数的直接识别算法[J]. 西南交通大学学报, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593
引用本文: 伍波, 王骑, 廖海黎, 李郁林. 自激气动力有理函数系数的直接识别算法[J]. 西南交通大学学报, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593
WU Bo, WANG Qi, LIAO Haili, LI Yulin. Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593
Citation: WU Bo, WANG Qi, LIAO Haili, LI Yulin. Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 247-255. doi: 10.3969/j.issn.0258-2724.20180593

自激气动力有理函数系数的直接识别算法

doi: 10.3969/j.issn.0258-2724.20180593
基金项目: 国家自然科学基金(51678508,51378442,51308478);国家自然科学基金高铁联合基金(U1434205)
详细信息
    作者简介:

    伍波(1989—),男,博士研究生,研究方向为大跨度桥梁抗风,E-mail:wubo243@my.swjtu.edu.cn

    通讯作者:

    王骑(1980—),男,副教授,博士,博士生导师,研究方向为大跨度桥梁和钝体空气动力学,E-mail:wangchee_wind@swjtu.edu.cn

  • 中图分类号: U441

Direct Identification of Coefficients of Rational Function Approximation for Self-Excited Aerodynamic Forces

  • 摘要: 有理函数系数识别是基于气动力有理函数逼近的桥梁颤振计算的前提条件. 有理函数滞后项的数量对其系数的识别结果影响较大,现有方法中一般仅考虑单滞后项的有理函数系数识别,易造成气动力描述上的失真,进而导致桥梁颤振计算结果不准确. 基于正弦信号的自激气动力在时域上与有理函数对等的原则,采用最小二乘拟合方法,提出了一种可计入多个滞后项的有理函数系数的直接识别算法. 以薄平板模型为对象,利用强迫振动风洞试验获得了自激气动力,采用该算法直接识别了计入不同滞后项的有理函数系数,并分析了滞后项数量对气动力重构精度影响以及对颤振临界风速计算精度的影响.通过自由振动颤振试验获得了实际的颤振风速,进而与采用识别出的有理函数计算的颤振风速进行对比,结果表明:颤振临界风速的试验值与计算值吻合较好,从而验证了本文所提识别算法的准确性;与现有的有理函数系数识别方法相比,本文提出的识别方法兼顾了效率和精度,可广泛用于实际桥梁断面自激气动力有理函数系数的识别中.

     

  • 图 1  薄平板试验断面

    Figure 1.  Cross section of models

    图 2  气动力模型试验值与有理函数拟合值比较(n = 1,2,3,4)

    Figure 2.  Comparison of aerodynamic force obtained from tested results and rational functions (n = 1,2,3,4)

    图 3  颤振导数试验值与有理函数计算值比较(n = 1,2,3,4)

    Figure 3.  Comparison of flutter derivatives obtained from tested results and rational functions (n = 1, 2, 3, 4)

    表  1  有理函数系数拟合结果(n = 3)

    Table  1.   Fitting results of rational function coefficients (n = 3)

    A1,ijA2,ijA3,ijA4,ijA5,ijdl,1dl,2dl,3
    Ase,110.547−8.025−0.606−0.6068.9020.1400.1401.500
    Ase,12−0.1551.5570.2500.2490.2730.1400.1401.500
    Ase,21−6.466−2.5201.0271.027−2.7270.1400.1401.500
    Ase,223.063−1.503−0.479−0.4790.1540.1400.1401.500
    下载: 导出CSV

    表  2  计算参数和试验参数

    Table  2.   Parameters for calculation and tests

    工况m/kgI/(kg•m2•m−1)ωα0/(rad•s)ωh0/(rad•s)ωα0/ωh0
    1 5.71 0.158 21.18 15.34 1.38
    2 6.44 0.216 23.67 14.70 1.61
    3 5.71 0.193 24.53 15.29 1.60
    下载: 导出CSV

    表  3  颤振计算结果对比

    Table  3.   Comparison of flutter analysis results

    方法工况Ucr/(m•s−1)误差/%fcr/Hz误差/%V误差/%
    风洞试验结果111.8 3.14 9.39
    216.5 3.38 12.20
    316.0 3.53 11.33
    颤振分析 (1个滞后项)110.97.63.043.29.023.9
    214.99.73.341.211.158.6
    314.68.83.462.010.527.1
    颤振分析(3个滞后项)111.52.72.994.89.602.2
    216.21.83.205.312.653.7
    315.81.33.355.111.804.1
    下载: 导出CSV
  • SCANLAN R H, TOMKO J J. Airfoil and bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, 1971, 97(6): 1717-1737.
    LI Q C, LIN Y K. New stochastic theory for bridge stability in turbulent flow[J]. Journal of Engineering Mechanics, 1995, 121(1): 102-116. doi: 10.1061/(ASCE)0733-9399(1995)121:1(102)
    KARPEL M. Design for active flutter suppression and gust alleviation using state-space aero-elastic modeling[J]. Journal of Aircraft, 1982, 19(3): 221-227. doi: 10.2514/3.57379
    KARPEL M. Minimum-state unsteady aerodynamic approximations with flexible constraints[J]. Journal of Aircraft, 1996, 33(6): 1190-1196.
    SCANLAN R H. Motion-related body force function in two-dimensional low speed flow[J]. Journal of Fluids and Structures, 2000, 14(1): 49-63. doi: 10.1006/jfls.1999.0252
    COSTA C, BORRI C. Application of indicial function in bridge deck aeroelasticity[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(11): 859-881. doi: 10.1016/j.jweia.2006.06.007
    XIE J. CVR method for identification of non-steady aerodynamic model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 29: 389-397. doi: 10.1016/0167-6105(88)90177-8
    谢霁明. 识别非定常气动力模型的初脉冲耦合振动法[J]. 空气动力学学报,1986,4(3): 258-268.

    XIE Jiming. CVR Method for identification of nonsteady aerodynamic model[J]. ACTA Aerodynamic Sinica, 1986, 4(3): 258-268.
    谢霁明,项海帆. 桥梁三维颤振分析的状态空间法[J]. 同济大学学报,1985(3): 1-13.

    XIE Jiming, XIANG Haifan. A state-space method for 3-D flutter analysis of bridge structures[J]. Journal of Tongji University, 1985(3): 1-13.
    CHEN X, MATSUMOTO M, AHSAN K. Time domain flutter and buffeting response analysis of bridges[J]. Journal of Engineering Mechanics, 2000, 126(1): 7-16. doi: 10.1061/(ASCE)0733-9399(2000)126:1(7)
    CHEN X, MATSUMOTO M, KAREEM A. Aerodynamic coupling effects on flutter and buffeting of bridges[J]. Journal of Engineering Mechanics, 2000, 126(1): 17-26. doi: 10.1061/(ASCE)0733-9399(2000)126:1(17)
    郭增伟,葛耀君. 桥梁自激力的状态空间模型的时频特性[J]. 振动工程学报,2013,26(2): 199-206. doi: 10.3969/j.issn.1004-4523.2013.02.007

    GUO Zengwei, GE Yaojun. Time and frequency response characteristics of self-exited force of bridge in state space domain[J]. Journal of Vibration Engineering, 2013, 26(2): 199-206. doi: 10.3969/j.issn.1004-4523.2013.02.007
    张志田,胡海波,陈政清. 桥梁自激气动力阶跃函数及时域颤振的数值算法[J]. 土木工程学报,2011,44(2): 99-107.

    ZHANG Zhitian, HU Haibo, CHEN Zhengqing. Bridge indicial functions for self-excited aerodynamic forces and numerical algorithm for time domain flutter[J]. China Civil Engineering Journal, 2011, 44(2): 99-107.
    张志田,陈政清,李春光. 桥梁自激气动力时域表达式的瞬态与极限特性[J]. 工程力学,2011,28(2): 75-85.

    ZHANG Zhitian, CHEN Zhengqing, LI Chunguang. Limiting and transient characteristics of time domain expressions for bridge self-excited aerodynamic forces[J]. Engineering Mechanics, 2011, 28(2): 75-85.
    WILDE K, FUJINO Y. Aerodynamic control of bridge deck flutter by active surfaces[J]. Journal of Engineering Mechanics, 1998, 124(7): 718-727. doi: 10.1061/(ASCE)0733-9399(1998)124:7(718)
    熊龙,廖海黎,马存明,等. 静风效应对千米级悬索桥颤振的影响[J]. 华中科技大学学报(自然科学版),2016,44(12): 44-49.

    XIONG Long, LIAO Haili, MA Cunming, et al. Study on aerostatic effects on flutter of kilometer level suspension bridge[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2016, 44(12): 44-49.
    王骑,廖海黎,李明水,等. 桥梁断面非线性自激气动力经验模型[J]. 西南交通大学学报,2013,48(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013

    WANG Qi, LIAO Haili, LI Mingshui, et al. Empirical mathematical model for nonlinear motion-induced aerodynamic force of bidge girder[J]. Journal of Southwest Jiaotong University, 2013, 48(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013
    CHOWDHURY A G, SARKAR P P. Experimental identification of rational function coefficients for time-domain flutter analysis[J]. Engineering Structures, 2005, 27(9): 1349-1364. doi: 10.1016/j.engstruct.2005.02.019
    CAO B, SARKAR P P. Identification of rational functions using two-degree-of-freedom model by forced vibration method[J]. Engineering Structures, 2012, 43: 21-30. doi: 10.1016/j.engstruct.2012.05.003
    SIEDZIAKO B, OISETH O. An enhanced identification procedure to determine the rational functions and aerodynamic derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamic, 2018, 176: 131-142. doi: 10.1016/j.jweia.2018.03.025
    李明水. 连续大气湍流中大跨度桥梁的抖振响应[D]. 成都: 西南交通大学, 1993.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  591
  • HTML全文浏览量:  361
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-15
  • 修回日期:  2018-10-16
  • 网络出版日期:  2018-12-24
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回