• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于改进安全域的轴箱轴承状态监测

赵聪聪 白杨 刘玉梅 赵颖慧 施继红

赵聪聪, 白杨, 刘玉梅, 赵颖慧, 施继红. 基于改进安全域的轴箱轴承状态监测[J]. 西南交通大学学报, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584
引用本文: 赵聪聪, 白杨, 刘玉梅, 赵颖慧, 施继红. 基于改进安全域的轴箱轴承状态监测[J]. 西南交通大学学报, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584
ZHAO Congcong, BAI Yang, LIU Yumei, ZHAO Yinghui, SHI Jihong. Condition Monitoring of Axle Box Bearing Based on Improved Safety Region[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584
Citation: ZHAO Congcong, BAI Yang, LIU Yumei, ZHAO Yinghui, SHI Jihong. Condition Monitoring of Axle Box Bearing Based on Improved Safety Region[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 889-895. doi: 10.3969/j.issn.0258-2724.20180584

基于改进安全域的轴箱轴承状态监测

doi: 10.3969/j.issn.0258-2724.20180584
基金项目: 国家自然科学基金资助项目(51575232);吉林省科技厅重点科技攻关项目(20160204018GX);吉林省科技厅自然科学基(20180101056JC)
详细信息
    作者简介:

    赵聪聪(1987—),女,讲师,研究方向为轨道车辆工程,E-mail:zhaocongcong0328@163.com

    通讯作者:

    刘玉梅(1966—),女,教授,研究方向为轨道车辆工程,E-mail:lymlls@163.com

  • 中图分类号: U260

Condition Monitoring of Axle Box Bearing Based on Improved Safety Region

  • 摘要: 为了提高高速列车轴箱轴承的运行可靠性,将安全域理论引入到轴承的状态监测,并将传统安全域估计转化为确定安全域的边界值来避免复杂模型参数的影响;利用归一化内禀模态分量的能量距构建轴承运行的状态特征向量,根据关联函数建立轴承安全域边界值估计模型,采用粒子群优化算法进行寻优求解;基于求解结果,结合关联函数定量分析轴承的运行状态,利用轴承全寿命疲劳试验进行验证,并将该方法应用于轴箱轴承的状态监测. 研究结果表明:全寿命试验的轴承运行状态的检出率和分类正确率分别为0.951和0.939;高速列车轴箱轴承运行状态的分类正确率为0.935,轴承运行正常,与其实际状态相一致.

     

  • 图 1  二维变量的安全域

    Figure 1.  Safety region of two dimensional variables

    图 2  轴承寿命疲劳试验台

    Figure 2.  Test bench for bearing life fatigue

    图 3  轴承1原始振动信号

    Figure 3.  Original vibration signal of bearing 1

    图 4  检验样本的空间分布

    Figure 4.  Spatial distribution of the test samples

    图 5  轴承运行状态估计

    Figure 5.  Operating state estimation of bearing

    图 6  不同样本数量下的轴承运行状态分布

    Figure 6.  Operating state distribution of bearing under different sample sizes

    图 7  轴箱轴承传感器布置

    Figure 7.  Sensor layout on axle box bearing

    图 8  轴箱轴承运行状态

    Figure 8.  Operating state of axle box bearing

    表  1  相关系数均值

    Table  1.   Mean values of correlation coefficients

    分量IMF1IMF2IMF3IMF4IMF5IMF6
    均值0.7370.4740.4900.2430.1500.130
    分量IMF7IMF8IMF9IMF10r
    均值0.1870.1110.0160.0060.006
    下载: 导出CSV

    表  2  安全域边界值

    Table  2.   Boundary values of safety region

    分量名称 上界 下界
    IMF1 0.517 0.678
    IMF2 0.082 0.156
    IMF3 0.136 0.269
    IMF4 0.016 0.045
    IMF5 0.006 0.022
    IMF6 0.002 0.017
    IMF7 0.008 0.055
    IMF8 0.000 0.015
    下载: 导出CSV

    表  3  轴承运行状态分类结果及系统运行时间

    Table  3.   Classification results of bearing operating state and system running time

    项目10 组50 组100 组150 组200 组400 组
    检出率0.3430.8720.9510.9410.9510.951
    分类正确率0.5850.8900.9390.9390.9400.938
    运行时间/s401906279881 3552 528
    下载: 导出CSV
  • YU Jianbo. Bearing performance degradation assessment using locality preserving projections[J]. Expert Systems with Applications, 2011, 38(6): 7440-7450. doi: 10.1016/j.eswa.2010.12.079
    赵聪聪. 高速列车传动系统可靠性分析与评估[D]. 长春: 吉林大学, 2016.
    ZHANG Yuan, QIN Yong, XING Zongyi, et al. Roller bearing safety region estimation and state identification based on LMD-PCA-LSSVM[J]. Measurement, 2013, 46(3): 1315-1324. doi: 10.1016/j.measurement.2012.11.048
    WU F F, KUMAGAI S. Steady-state security regions of power systems[J]. IEEE Transactions on Circuits and Systems, 1982, 29(11): 703-711. doi: 10.1109/TCS.1982.1085091
    刘志亮,刘仕林,李兴林,等. 滚动轴承安全域建模方法及其在高速列车异常检测中的应用[J]. 机械工程学报,2017,53(10): 116-124. doi: 10.3901/JME.2017.10.116

    LIU Zhiliang, LIU Shilin, LI Xinglin, et al. Safety domain modelling of rolling bearing and its application to anomaly detection for high-speed rail vehicles[J]. Journal of Mechanical Engineering, 2017, 53(10): 116-124. doi: 10.3901/JME.2017.10.116
    冯坚强,李俊明,王晓浩,等. 基于LSSVM和PNN的车轮状态安全域估计及故障诊断[J]. 机械制造与自动化,2017,46(1): 141-145.

    FENG Jianqiang, LI Junming, WANG Xiaohao, et al. Safety region estimation and fault diagnosis of wheels based on least squares support vector machine and probabilistic neural networks[J]. Machine Building & Automation, 2017, 46(1): 141-145.
    HE Yongxiu, DAI Aiying, ZHU Jiang, et al. Risk assessment of urban network planning in china based on the matter-element model and extension analysis[J]. International Journal of Electrical Power and Energy Systems, 2011, 33(3): 775-782. doi: 10.1016/j.ijepes.2010.12.037
    WANG Chunlai, WU Aixiang, LU Hui, et al. Predicting rockburst tendency based on fuzzy matter—element model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75(2): 224-232.
    刘玉梅,赵聪聪,熊明烨,等. 高速列车传动系统特征参数经典域优化[J]. 西南交通大学学报,2016,51(1): 85-90,120. doi: 10.3969/j.issn.0258-2724.2016.01.013

    LIU Yumei, ZHAO Congcong, XIONG Mingye, et al. Optimization of classical domains for high-speed train transmission system[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 85-90,120. doi: 10.3969/j.issn.0258-2724.2016.01.013
    BEN A J, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89(3): 16-27.
    WANG C F, AN G, YANG F J. Research on fault diagnosis of certain armored vehicle’gear-box with IMF’s energy moment[J]. Advanced Materials Research, 2011, 383(11): 248-253.
    QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(1): 1066-1090.
    LIU Y M, ZHAO C C, XIONG M Y, et al. Assessment of bearing performance degradation via extension and EEMD combined approach[J]. Journal of Central South University, 2017, 24(5): 1155-1163. doi: 10.1007/s11771-017-3518-5
    陶新民,徐晶,杨立标,等. 基于GARCH模型MSVM的轴承故障诊断方法[J]. 振动与冲击,2010,29(5): 11-15. doi: 10.3969/j.issn.1000-3835.2010.05.003

    TAO Xinmin, XU Jing, YANG Libiao, et al. Study of bearing fault diagnosis based on GARCH model[J]. Journal of Vibration and Shock, 2010, 29(5): 11-15. doi: 10.3969/j.issn.1000-3835.2010.05.003
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  250
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-30
  • 修回日期:  2019-04-28
  • 网络出版日期:  2019-05-09
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回