• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

UV/PS降解阿特拉津机理及动力学分析

陆一新 何悦 张建强 符琛琛 陈佼

陆一新, 何悦, 张建强, 符琛琛, 陈佼. UV/PS降解阿特拉津机理及动力学分析[J]. 西南交通大学学报, 2020, 55(3): 635-642, 680. doi: 10.3969/j.issn.0258-2724.20180523
引用本文: 陆一新, 何悦, 张建强, 符琛琛, 陈佼. UV/PS降解阿特拉津机理及动力学分析[J]. 西南交通大学学报, 2020, 55(3): 635-642, 680. doi: 10.3969/j.issn.0258-2724.20180523
LU Yixin, HE Yue, ZHANG Jianqiang, FU Chenchen, CHEN Jiao. Mechanism and Kinetic Analysis on Degradation of Atrazine by UV/PS[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 635-642, 680. doi: 10.3969/j.issn.0258-2724.20180523
Citation: LU Yixin, HE Yue, ZHANG Jianqiang, FU Chenchen, CHEN Jiao. Mechanism and Kinetic Analysis on Degradation of Atrazine by UV/PS[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 635-642, 680. doi: 10.3969/j.issn.0258-2724.20180523

UV/PS降解阿特拉津机理及动力学分析

doi: 10.3969/j.issn.0258-2724.20180523
基金项目: 四川省科技计划项目(2017GZ0375);成都市科技惠民技术研发项目(2015-HM01-00333-SF)
详细信息
    作者简介:

    陆一新(1980—),女,副教授,博士,研究方向为水处理理论与技术,E-mail:yxlu61@163.com

    通讯作者:

    张建强(1963—),男,教授,博士,研究方向为污染环境生态修复理论和技术,E-mail:zhjiqicn@swjtu.cn

  • 中图分类号: X703.1

Mechanism and Kinetic Analysis on Degradation of Atrazine by UV/PS

  • 摘要: 为了解决阿特拉津(atrazine,ATZ)对水体污染问题,采用紫外/过二硫酸盐 (ultraviolet/peroxodisulfate,UV/PS) 降解水体中的ATZ,考察了不同pH值、UV强度、PS浓度、温度条件下UV/PS对ATZ的降解效果,同时对其降解机理、降解动力学及降解路径进行了探讨. 机理分析表明,UV可使ATZ发生光解,UV/PS能快速降解水体中ATZ,中性偏碱性条件下UV/PS体系中同时存在SO4• 和 •OH. 动力学分析表明,不同温度、pH值、PS浓度、UV强度条件下UV/PS降解ATZ动力学符合准一级反应动力学. 降解路径分析表明,ATZ主要通过脱氯、加羟基、脱乙基、脱异丙基等方式被降解,几种降解方式并不孤立,但三嗪环并未开环降解. 试验结果表明,反应体系温度为25 ℃,PS浓度为70 μmol/L,UV强度为50 mW/cm2,反应体系初始pH为5.8,反应时间为20 min时,UV/PS体系对2.5 μmol/L ATZ的降解率可达91.03%.

     

  • 图 1  pH对ATZ降解效果的影响

    Figure 1.  Effect of pH on ATZ degradation efficiency

    图 2  UV强度对ATZ降解效果的影响

    Figure 2.  Effect of UV intensity on ATZ degradation efficiency

    图 3  PS浓度对ATZ降解效果的影响

    Figure 3.  Effect of PS concentration on ATZ degradation efficiency

    图 4  温度对ATZ降解效果的影响

    Figure 4.  Influence of temperature on ATZ degradation efficiency

    图 5  UV/PS体系中各组分氧化效果分析及乙醇对UV/PS降解ATZ的影响

    Figure 5.  Analysis on oxidation effect of each component in UV/PS system and effect of ETA on degradation of ATZ by UV/PS

    图 6  UV/PS降解ATZ可能降解路径

    注:(1)—去C-N键断裂; (2)—羟基化; (3)—脱水反应.

    Figure 6.  Possible degradation pathways of ATZ by UV/PS

    表  1  不同反应条件下UV/PS降解ATZ反应动力学拟合参数

    Table  1.   Fitted kinetics parameters of UV/PS degradation ATZ in different reaction conditions

    反应条件速率常数/min−1R2动力学方程
    pH 3.0 0.360 6 0.972 3 $\ln \left( {C/{C_0}} \right) = - 0.360\;6t + 0.240\;6$
    4.0 0.290 6 0.956 8 $\ln \left( {C/{C_0}} \right) = - 0.290\;6t + 0.144\;5$
    7.0 0.381 9 0.997 9 $\ln \left( {C/{C_0}} \right) = - 0.381\;9t - 0.021\;6$
    8.0 0.270 5 0.995 0 $\ln \left( {C/{C_0}} \right) = - 0.207\;5t + 0.067\;1$
    9.0 0.283 6 0.994 6 $\ln \left( {C/{C_0}} \right) = - 0.283\;6t + 0.059\;5$
    UV强度/(mW•cm−2 30 0.004 9 0.912 2 $\ln \left( {C/{C_0}} \right) = - 0.004\;9t - 0.026\;6$
    50 0.044 1 0.997 7 $\ln \left( {C/{C_0}} \right) = - 0.044\;1t - 0.010\;8$
    100 0.070 9 0.998 5 $\ln \left( {C/{C_0}} \right) = - 0.070\;9t - 0.009\;8$
    PS浓度/(μmol•L−1 10 0.022 9 0.977 7 $\ln \left( {C/{C_0}} \right) = - 0.022\;9t + 0.013\;2$
    20 0.035 0 0.982 7 $\ln \left( {C/{C_0}} \right) = - 0.035\;0t - 0.041\;3$
    30 0.044 1 0.997 7 $\ln \left( {C/{C_0}} \right) = - 0.044\;1t - 0.010\;8$
    40 0.055 3 0.978 3 $\ln \left( {C/{C_0}} \right) = - 0.055\;3t - 0.009\;8$
    50 0.074 2 0.992 0 $\ln \left( {C/{C_0}} \right) = - 0.074\;2t - 0.074\;4$
    60 0.092 2 0.989 9 $\ln \left( {C/{C_0}} \right) = - 0.092\;2t - 0.058\;4$
    70 0.116 9 0.984 5 $\ln \left( {C/{C_0}} \right) = - 0.116\;9t + 0.057\;1$
    温度/℃ 10 0.032 4 0.971 5 $\ln \left( {C/{C_0}} \right) = - 0.032\;4t - 0.082\;9$
    15 0.053 8 0.987 7 $\ln \left( {C/{C_0}} \right) = - 0.053\;8t - 0.055\;8$
    20 0.074 2 0.992 0 $\ln \left( {C/{C_0}} \right) = - 0.074\;2t - 0.074\;4$
    25 0.122 8 0.992 2 $\ln \left( {C/{C_0}} \right) = - 0.122\;8t - 0.011\;1$
    下载: 导出CSV
  • 李清波,黄国宏,王颜红,等. 阿特拉津生态风险及其检测和修复技术研究进展[J]. 应用生态学报,2002,13(5): 625-628. doi: 10.3321/j.issn:1001-9332.2002.05.026

    LI Qingbo, HUANG Guohong, WANG Yanhong, et al. Advances of studies on ecological risk of herbicide atrazine and its determination and remediation[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 625-628. doi: 10.3321/j.issn:1001-9332.2002.05.026
    孟顺龙,胡庚东,瞿建宏,等. 阿特拉津在水环境中的残留及其毒理效应研究进展[J]. 环境污染与防治,2009,31(6): 64-68. doi: 10.3969/j.issn.1001-3865.2009.06.018

    MENG Shunlong, HU Gengdong, QU Jianhong, et al. Research progress on atrazine residue in water environment and its toxicological effects[J]. Environmental Pollution & Control, 2009, 31(6): 64-68. doi: 10.3969/j.issn.1001-3865.2009.06.018
    JONES T W, KEMP W M, STEVNSON J C, et al. Degradation of atrazine in Estuarine water/sediment systems and soils[J]. Journal of Environmental Quality, 1982, 11(4): 632-638.
    COMBER S D. Abiotic persistence of atrazine and simazine in water[J]. Pest Management Science, 2015, 55(7): 696-702.
    LI Hongyuan, MA Hong, TAO Bo. Ecological risk assessment of atrazine and control strategy[J]. Journal of Northeast Agricultural University, 2006, 37(4): 552-556.
    任晋,蒋可,周怀东. 官厅水库水中阿特拉津残留的分析及污染来源[J]. 环境科学,2002,23(1): 126-128. doi: 10.3321/j.issn:0250-3301.2002.01.028

    REN Jin, JIANG Ke, ZHOU Huaidong. The concentration and source of atrazine residue in water of Guanting reservoir[J]. Environmental Science, 2002, 23(1): 126-128. doi: 10.3321/j.issn:0250-3301.2002.01.028
    杨敏娜,周芳,孙成,等. 长江江苏段有毒有机污染物的残留特征及来源分析[J]. 环境化学,2006,25(3): 375-376. doi: 10.3321/j.issn:0254-6108.2006.03.030

    YANG Minna, ZHOU Fang, SUN Cheng, et al. Residual characteristics and source analysis of toxic organic pollutants in Jiangsu section of Yangtze River[J]. Environmental Chemistry, 2006, 25(3): 375-376. doi: 10.3321/j.issn:0254-6108.2006.03.030
    严登华,何岩,王浩. 东辽河流域地表水体中atrazine的环境特征[J]. 环境科学,2005,26(3): 53-54.

    YAN Denghua, HE Yan, WANG Hao. Environmental characteristics of the atrazine in the waters in East Liaohe River basin[J]. Environmental Science, 2005, 26(3): 53-54.
    中华人民共和国卫生部. 中国国家标准化管理委员会.生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2006.
    WALKER B S, KRAMER A G, LASSITER C S. Atrazine affects craniofacial chondrogenesis and axial skeleton mineralization in zebrafish (Danio rerio)[J]. Toxicology & Industrial Health, 2018, 34(5): 329-338.
    HAYES T B, COLLINS A, LEE M, et al. Hermaphroditic,demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5476-5480. doi: 10.1073/pnas.082121499
    LIN Jia, LI Huixin, QIN Lei, et al. A novel mechanism underlies atrazine toxicity in quails (Coturnix Coturnix coturnix):triggering ionic disorder via disruption of ATPases[J]. Oncotarget, 2016, 7(51): 83880-83892.
    SANDERSON J T, SEINEN W, GIESY J P, et al. 2-Chloro-s-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells:a novel mechanism for estrogenicity[J]. Toxicological Sciences, 2000, 54(1): 121-127. doi: 10.1093/toxsci/54.1.121
    JI Yuefei, DONG Changxun, KONG Deyang, et al. Heat-activated persulfate oxidation of atrazine:implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263: 45-54. doi: 10.1016/j.cej.2014.10.097
    GU Xiaogang, LU Shuguang, QIU Zhaofu, et al. Comparison of photodegradation performance of 1,1,1-Trichloroethane in aqueous solution with the addition of H2O2 or S2O82− oxidants[J]. Industrial & Engineering Chemistry Research, 2012, 51: 7196-7204.
    LUCA A D, HE X, DIONYSIOU D D, et al. Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate[J]. Chemical Engineering Journal, 2017, 318: 206-213. doi: 10.1016/j.cej.2016.06.066
    KHAN J A, HE X, SHAH N S, et al. Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2,S2O82- and HSO5-[J]. Chemical Engineering Journal, 2014, 252: 393-403. doi: 10.1016/j.cej.2014.04.104
    SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chemical Engineering Journal, 2016, 300: 254-263. doi: 10.1016/j.cej.2016.04.079
    HORI H, MURAYAMA M, INOUE N, et al. Efficient mineralization of hydroperfluorocarboxylic acids with persulfate in hot water[J]. Catalysis Today, 2010, 151(1/2): 131-136.
    WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate:kinetics and products[J]. Environmental Science & Technology, 2007, 41(3): 1010-1015.
    ANIPSITAKIS G P, DIONYSIOU D D. Radical Generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
    BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (HO•/•O-)in aqueous solution[J]. Journal of Physical & Chemical Reference Data, 2009, 17(2): 513-886.
    康宏亮. 零价铝/锌降解水中阿特拉津及其机理研究[D]. 武汉: 华中师范大学, 2016.
    CHEN Cheng, YANG Shaogui, GUO Yaping, et al. Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: products and pathways[J]. Journal of Hazardous Materials, 2009, 172(2): 675-684. doi: 10.1016/j.jhazmat.2009.07.050
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  343
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-21
  • 修回日期:  2018-10-22
  • 网络出版日期:  2020-05-11
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回