• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

计算网格对列车空气动力学不确定性的影响

李田 秦登 安超 张继业

李田, 秦登, 安超, 张继业. 计算网格对列车空气动力学不确定性的影响[J]. 西南交通大学学报, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503
引用本文: 李田, 秦登, 安超, 张继业. 计算网格对列车空气动力学不确定性的影响[J]. 西南交通大学学报, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503
LI Tian, QIN Deng, AN Chao, ZHANG Jiye. Effect of Computational Grid on Uncertainty in Train Aerodynamics[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503
Citation: LI Tian, QIN Deng, AN Chao, ZHANG Jiye. Effect of Computational Grid on Uncertainty in Train Aerodynamics[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503

计算网格对列车空气动力学不确定性的影响

doi: 10.3969/j.issn.0258-2724.20180503
基金项目: 国家自然科学基金资助项目(51605397),国家重点研发计划课题资助项目(2016YFB1200403),四川省科技计划资助项目(2019YJ0227)
详细信息
    作者简介:

    李田(1984—),男,助理研究员,博士,研究方向为列车空气动力学,E-mail:litian2008@swjtu.cn

  • 中图分类号: U238;U260;O353

Effect of Computational Grid on Uncertainty in Train Aerodynamics

  • 摘要: 为评价计算网格对明线列车空气动力学数值仿真计算结果的影响,基于计算流体力学,研究了计算网格对列车气动特性的不确定性. 首先根据3种不同尺寸的计算网格及其计算结果,提出了计算网格对列车气动力和表面压力不确定性的计算方法;其次以ICE2列车为研究对象,划分了3种不同尺寸的计算网格,数值仿真得到了列车气动力和典型截面的压力;最后研究了该列车头车气动力和典型截面压力的不确定性. 研究结果表明:数值仿真得到的气动侧力系数与试验数据的误差仅为0.31%;车身迎风侧表面压力的不确定性接近于0;车身表面压力不确定性较大的位置主要位于车体底部,其最大不确定度达到1.42;头车侧力系数的不确定度为0.002 6,而头车升力系数的不确定度为0.509 3.

     

  • 图 1  列车气动特性的不确定计算流程

    Figure 1.  Flow chart for the uncertainty calculation of train aerodynamics

    图 2  列车模型

    Figure 2.  Train model

    图 3  计算区域

    Figure 3.  Computational domain

    图 4  计算网格

    Figure 4.  Computational mesh

    图 5  列车表面压力的不确定性

    Figure 5.  Uncertainty of train surface pressure

    图 6  列车气动力的不确定性

    Figure 6.  Uncertainty of train aerodynamic forces

  • STERN F, WILSON R, COLEMAN H W, et al. Comprehensive approach to verification and validation of CFD simulations—part 1:methodology and procedures[J]. Journal of Fluids Engineering, 2001, 123(4): 793-802. doi: 10.1115/1.1412235
    WILSON R, STERN F, COLEMAN H W, et al. Comprehensive approach to verification and validation of CFD simulations—part 2:application for RANS simulation of a cargo/container ship[J]. Journal of Fluids Engineering, 2001, 123(4): 803-810. doi: 10.1115/1.1412236
    ROY C J. Review of code and solution verification procedures for computational simulation[J]. Journal of Computational Physics, 2005, 205(1): 131-156. doi: 10.1016/j.jcp.2004.10.036
    RICHARDSON L F. The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam[J]. Philosaphical Transaction of the Royal Society of London,Series A, 1911, 210: 307-357.
    ROACHE P J. Perspective:a method for uniform reporting of grid refinement studies[J]. Journal of Fluids Engineering, 1994, 116: 405-413. doi: 10.1115/1.2910291
    ECA L, HOEKSTRA M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies[J]. Journal of Computational Physics, 2014, 262: 104-130. doi: 10.1016/j.jcp.2014.01.006
    HEMIDA H, BAKER C J. LES of the flow around a freight wagon subjected to crosswind[J]. Comput. Fluids, 2010, 39(10): 1944-1956. doi: 10.1016/j.compfluid.2010.06.026
    FLYNN D, HEMIDA H, SOPER D, et al. Detached-eddy simulation of the slipstream of an operational freight train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132: 1-12. doi: 10.1016/j.jweia.2014.06.016
    MORDEN J A, HEMIDA H, BAKER C J. Comparison of RANS and detached eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train[J]. Journal of Fluids Engineering, 2015, 137(4): 041108. doi: 10.1115/1.4029261
    LI T, HEMIDA H, ZHANG J, et al. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 111108. doi: 10.1115/1.4040672
    ZHANG Jie, LI Jingjuan, TIAN Hongqi, et al. Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance[J]. Journal of Fluids and Structures, 2016, 61: 249-261. doi: 10.1016/j.jfluidstructs.2015.10.006
    李田,张继业,张卫华. 列车通过引起轨侧脉动压力波的数值模拟[J]. 机械工程学报,2017,53(8): 115-123.

    LI Tian, ZHANG Jiye, ZHANG Weihua. Numerical simulation of train-induced aerodynamic impulse pressure waves beside the track[J]. Journal of Mechanical Engineering, 2017, 53(8): 115-123.
    NIU Jiqiang, ZHOU Dan, LIU Tanghong, et al. Numerical simulation of aerodynamic performance of a couple multiple units high-speed train[J]. Vehicle System Dynamics, 2017, 55(5): 681-703. doi: 10.1080/00423114.2016.1277769
    张亮,张继业,李田,等. 高速列车头型多目标气动优化设计[J]. 西南交通大学学报,2016,51(6): 1055-1063. doi: 10.3969/j.issn.0258-2724.2016.06.003

    ZHANG Liang, ZHANG Jiye, LI Tian, et al. Multi-objective aerodynamic optimization design for head shape of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1055-1063. doi: 10.3969/j.issn.0258-2724.2016.06.003
    骆建军. 隧道入口侧风条件下高速铁路隧道内流场特性[J]. 西南交通大学学报,2017,52(4): 746-754. doi: 10.3969/j.issn.0258-2724.2017.04.013

    LUO Jianjun. Tunnel entrance field characteristics induced by high speed train with crosswind at entrance[J]. Journal of Southwest Jiaotong University, 2017, 52(4): 746-754. doi: 10.3969/j.issn.0258-2724.2017.04.013
    王政,李田,张继业. 不同类型横风下高速列车气动性能研究[J]. 机械工程学报,2018,54(4): 203-211.

    WANG Zheng, LI Tian, ZHANG Jiye. Research on aerodynamic performance of high-speed train subjected to different types of crosswind[J]. Journal of Mechanical Engineering, 2018, 54(4): 203-211.
    CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001. doi: 10.1115/1.2960953
    National Stomdards Authonity of Ireland. Railway applications-aerodynamics: part 6: requirements and test procedures for cross wind assessment: CEN 14067[S]. London: BSI, 2010
    WU D. Predictive prospects of unsteady detached-eddy simulations in industrial external aerodynamic flow simulations[D]. Aachen: Lehrstuhl Für Strömungslehre und Aerodynamishes Institute Aachen 2004
    国家铁路局. 铁路应用空气动力学: 第4部分: 列车空气动力学性能数值仿真规范: TBT3503.4— 2018[S]. 北京: 铁道出版社, 2018
    ORELLANO A, SCHOBER M. Aerodynamic performance of a typical high speed train[C]//Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics. Greece: WSEAS, 2006: 18-25
    HEMIDA H, KRAJNOVIĆ S. Exploring flow structures around a simplified ICE2 train subjected to a 30° side wind using LES[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 3(1): 28-41.
  • 加载中
图(6)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  184
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-08-31
  • 网络出版日期:  2018-09-20
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回