• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高铁扣件的自适应视觉检测算法

范宏 侯云 李柏林 熊鹰

范宏, 侯云, 李柏林, 熊鹰. 高铁扣件的自适应视觉检测算法[J]. 西南交通大学学报, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
引用本文: 范宏, 侯云, 李柏林, 熊鹰. 高铁扣件的自适应视觉检测算法[J]. 西南交通大学学报, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
FAN Hong, HOU Yun, LI Bailin, XIONG Ying. Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496
Citation: FAN Hong, HOU Yun, LI Bailin, XIONG Ying. Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 896-902. doi: 10.3969/j.issn.0258-2724.20180496

高铁扣件的自适应视觉检测算法

doi: 10.3969/j.issn.0258-2724.20180496
基金项目: 四川省科技计划项目(2018GZ0361)
详细信息
    作者简介:

    范宏(1985—),男,博士研究生,研究方向为机器视觉与模式识别,E-mail:hg.fan@foxmail.com

    通讯作者:

    李柏林(1962—),男,教授,研究方向为计算机图形图像处理,E-mail:blli62@263.net

  • 中图分类号: TP391.41

Adaptive Detection Algorithm for High-Speed Railway Fasteners by Vision

  • 摘要: 为了实现高铁缺陷扣件的准确、快速和自动化检测,提出一种基于图像处理技术的高铁扣件自适应视觉检测算法. 针对高铁扣件图像的特性,使用改进的LBP (local binary pattern)算子提取扣件的显著特征;在扣件特征图的基础上,采用模板匹配算法得到扣件区域在原始图中的精确位置,进而得到扣件子图并用扣件的位置信息校验定位结果;以相邻两个扣件子图的差值作为判断依据,如果差值大于预设的阈值,相应的扣件则被判断为缺陷扣件. 将该检测算法应用于高铁工务部门提供的真实扣件图. 研究结果表明:本文提出的自适应扣件检测算法在雨天的表现最差,检出率为96%,误检率为0.50%;在晴天的表现最好,检出率为100%,误检率为0.22%;在不同天气、光照、环境下的综合检出率为99%,综合误检率为0.33%.

     

  • 图 1  原始LBP的邻域结构及其权重

    Figure 1.  Neighborhood structures of original LBP and its weights (N = 8,R = 1)

    图 2  改进LBP的邻域结构及其权重

    Figure 2.  Neighborhood structures of improved LBP and its weights (N = 4,R = 1)

    图 3  使用不同邻域半径的扣件改进LBP

    Figure 3.  Fastener image coded by improved LBP with different neighborhood radius

    图 4  原始LBP与改进LBP对扣件噪声图像的编码结果对比

    Figure 4.  Comparison of coding results for fastener noise images using original LBP and improved LBP

    图 5  模板与掩膜

    Figure 5.  Template and mask

    图 6  改进LBP编码的原始图像

    Figure 6.  Original image encoded by improved LBP

    图 7  扣件定位

    Figure 7.  fastener localization

    图 8  相邻扣件的位置关系

    Figure 8.  Positional relationship of adjacent fasteners

    图 9  相邻扣件及其特征图对比

    Figure 9.  Comparison of adjacent fasteners and their feature maps

    图 10  原始测试图像

    Figure 10.  Original test images

    表  1  扣件定位结果

    Table  1.   Results of fastener localization

    定位方法 输入图像数/(× 104 幅)图像大小/像素包含扣件数/(× 104 个)准确定位/幅定位准确率/%
    Yang[10]31 000 × 3501827 50491.68
    Feng[14]31 000 × 3501828 27294.24
    Original LBP31 000 × 3501828 95696.52
    本文方法31 000 × 3501829 98899.96
    下载: 导出CSV

    表  2  扣件识别结果(Td = 0.3)

    Table  2.   Results of fastener recognition algorithm (Td = 0.3)

    图像类别输入图像总数/(× 103 幅)正常图像数/幅缺陷图像数/幅正确检出/幅错误检出/幅检出率/%误检率/%
    高光照 5 4 968 32 32 16 100.00 0.32
    低光照 5 4 964 36 35 21 97.22 0.42
    雨天 5 4 975 25 24 25 96.00 0.50
    晴天 5 4 966 34 34 11 100.00 0.22
    新线路 5 4 972 28 28 12 100.00 0.24
    老线路 5 4 955 45 45 14 100.00 0.28
    综合 30 29 800 200 198 99 99.00 0.33
    下载: 导出CSV
  • 肖新标,金学松,温泽峰. 钢轨扣件失效对列车动态脱轨的影响[J]. 交通运输工程学报,2006,6(1): 10-15. doi: 10.3321/j.issn:1671-1637.2006.01.002

    XIAO Xinbiao, JIN Xuesong, WEN Zefeng. Influence of rail fastener failure on vehicle dynamic derailment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15. doi: 10.3321/j.issn:1671-1637.2006.01.002
    翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    LI Q, REN S. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(8): 2189-2199. doi: 10.1109/TIM.2012.2184959
    WU X, YUAN P, PENG Q, et al. Detection of bird nests in overhead catenary system images for high-speed rail[J]. Pattern Recognition, 2016, 51: 242-254. doi: 10.1016/j.patcog.2015.09.010
    SUN J, XIAO Z, XIE Y. Automatic multi-fault recognition in TFDS based on convolutional neural network[J]. Neurocomputing, 2017, 222: 127-136. doi: 10.1016/j.neucom.2016.10.018
    QIAO Y, CAPPELLE C, RUICHEK Y. Visual localization across seasons using sequence matching based on multi-feature combination[J]. Sensors, 2017, 17: 24-42.
    SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]//Proceedings of IEEE Int. Conf. Comput. Intell. Homeland Security Personal Safety. Piscataway: IEEE, 2006: 56-59.
    MARINO F, DISTANTE A, MAZZEO P, et al. A real-time visual inspection system for railway maintenance:automatic hexagonal-headed bolts detection[J]. IEEE Transactions on Systems,Man and Cybernetics,Part C (Applications and Reviews), 2007, 37(3): 418-428. doi: 10.1109/TSMCC.2007.893278
    STELLA E, MAZZEO P, NITTI M, et al. Visual recognition of missing fastening elements for railroad maintenance[C]// Proceedings of IEEE Int. Conf. Intell. Transp. Syst. Piscataway: IEEE, 2002: 94-99.
    YANG J, TAO W, LIU M, et al. An efficient direction field-based method for the detection of fasteners on high-speed railways[J]. Sensors, 2011, 11: 7364-7381
    XIA Y, XIE F, JIANG Z. Broken railway fastener detection based on adaboost algorithm[C]//Proceedings of International Conference on Optoelectronics and Image Processing. Washington D. C.: IEEE, 2010: 313-316.
    刘甲甲,李柏林,罗建桥,等. 融合PHOG和MSLBP特征的铁路扣件检测算法[J]. 西南交通大学学报,2015,50(2): 256-263. doi: 10.3969/j.issn.0258-2724.2015.02.008

    LIU Jiajia, LI Bailin, LUO Jianqiao, et al. Railway fastener detection algorithm integrating PHOG and MSLBP features[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 256-263. doi: 10.3969/j.issn.0258-2724.2015.02.008
    LI Y, OTTO C, HAAS N, et al. Component-based track inspection using machine-vision technology[C]// Proceedings of the 1st ACM International Conference on Multimedia Retrieval. New York: ACM, 2011: 60-61.
    FENG H, JIANG Z, XIE F, et al. Automatic fastener classification and defect detection in vision-based railway inspection systems[J]. IEEE Trans. Instrumentation and Measurement, 2014, 63(4): 877-888. doi: 10.1109/TIM.2013.2283741
    OJALA T, PIETIKAINEN M, MAENPAA T. Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI.2002.1017623
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  342
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-11-07
  • 网络出版日期:  2018-11-13
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回