• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高效产纤维素酶曲霉生物转化纤维素乙醇

刘洋 邱忠平 孟涛 龚正君 王东梅 樊超

刘洋, 邱忠平, 孟涛, 龚正君, 王东梅, 樊超. 高效产纤维素酶曲霉生物转化纤维素乙醇[J]. 西南交通大学学报, 2020, 55(1): 225-230. doi: 10.3969/j.issn.0258-2724.20180477
引用本文: 刘洋, 邱忠平, 孟涛, 龚正君, 王东梅, 樊超. 高效产纤维素酶曲霉生物转化纤维素乙醇[J]. 西南交通大学学报, 2020, 55(1): 225-230. doi: 10.3969/j.issn.0258-2724.20180477
LIU Yang, QIU Zhongping, MENG Tao, GONG Zhengjun, WANG Dongmei, FAN Chao. Biotransformation of Bioethanol from Lignocellulose by High Yield Cellulase-Producing Aspergillus[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 225-230. doi: 10.3969/j.issn.0258-2724.20180477
Citation: LIU Yang, QIU Zhongping, MENG Tao, GONG Zhengjun, WANG Dongmei, FAN Chao. Biotransformation of Bioethanol from Lignocellulose by High Yield Cellulase-Producing Aspergillus[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 225-230. doi: 10.3969/j.issn.0258-2724.20180477

高效产纤维素酶曲霉生物转化纤维素乙醇

doi: 10.3969/j.issn.0258-2724.20180477
基金项目: 国家自然科学基金(21776230),四川省科技支撑计划(2015NZ0097)
详细信息
    作者简介:

    刘洋(1978—)女,讲师,博士,研究方向为环境微生物,E-mail:liuyang2010@home.swjtu.edu.cn

    通讯作者:

    邱忠平(1967—),女,副教授,博士,研究方向为固体废弃物处理与资源化,E-mail:zhpqiu@sina.com

Biotransformation of Bioethanol from Lignocellulose by High Yield Cellulase-Producing Aspergillus

  • 摘要: 为了提高纤维素乙醇的生产效率,对高效产纤维素酶曲霉W-10的产酶条件进行优化,利用其发酵所得的粗酶液对预处理后的水稻秸秆粉进行酶解,并用酿酒酵母通过同步糖化发酵(simultaneous saccharification and fermentation, SSF)工艺生物转化纤维素乙醇. 首先通过定时取样测定还原糖量,研究不同底物浓度、不同表面活性剂添加量、纤维二糖酶的协同作用等因素对酶解过程的影响. 然后利用所得优化后的酶解条件进行同步糖化实验,研究不同的发酵温度、发酵时间、初始pH值等影响因素对同步糖化发酵乙醇的影响. 结果表明,当底物浓度为80 g/L、表面活性剂吐温-80添加浓度为5 g/L、酶解体系外纤维二糖酶补加量为166.67 nkat/g时,粗酶液的酶解率最高;在35 ℃的培养温度、初始pH值为5的条件下发酵4 d时,发酵液中乙醇含量最高,乙醇得率可达0.43 g/g(底物干重). 优化高效产纤维素酶曲霉W-10酶解水稻秸秆的反应条件,可促进纤维素乙醇生物转化技术的发展,有利于可再生的清洁能源生物乙醇的商业化生产和应用.

     

  • 图 1  不同反应条件对酶解反应的影响

    Figure 1.  Effects of different reaction conditions on hydrolyse

    图 2  不同反应条件对SSF的影响

    Figure 2.  Effects on SSF from different reaction conditions

    表  1  水稻秸秆的纤维素、半纤维素、木质素质量分数

    Table  1.   Mass fraction of cellulose,hemicellulose and lignin in rice stalk %

    纤维素半纤维素木质素
    42.4829.4010.73
    下载: 导出CSV
  • 李玉琦. 高效降解水稻秸秆复合菌群的构建及其降解效能[D]. 哈尔滨: 哈尔滨工业大学, 2016
    GNANSOUNOU E. Production and use of lignocellulosic bioethanol in Europe:current situation and perpectives[J]. Bioresource Technology, 2010, 101: 4842-50. doi: 10.1016/j.biortech.2010.02.002
    KOSSATZ H L, ROSE S H, VILJOEN B M. Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process[J]. Process Biochemistry, 2016, 53: 10-16.
    BELAL E B. Bioethanol production from rice straw residues[J]. Brazilian Journal Microbiology, 2013, 44(1): 225-234. doi: 10.1590/S1517-83822013000100033
    赵蒙蒙,姜曼,周祚万. 几种农作物秸秆的成分分析[J]. 材料导报,2011,25(16): 122-125.

    ZHAO Mengmeng, JIANG Man, ZHOU Zuowan. The components analysis of several kinds of agricultural residues[J]. Materials Review, 2011, 25(16): 122-125.
    刘会影,李国立,薛冬桦. 近红外光谱法测定玉米秸秆纤维素和半纤维素含量[J]. 中国农学通报,2013,29(35): 182-186. doi: 10.11924/j.issn.1000-6850.2013-0091

    LIU Huiying, LI Guoli, XUE Donghua. Determination of cellulose and hemicellulose contents in corn straw using near-infrared spectroscopy[J]. Chinese Agricultural Science Bulletin, 2013, 29(35): 182-186. doi: 10.11924/j.issn.1000-6850.2013-0091
    车莉. 农作物秸秆资源量估算、分布与利用潜力研究[D]. 大连: 大连理工大学, 2014
    谢丽萍. 大肠杆菌中乙醇生物合成途径的构建[D]. 无锡: 江南大学, 2001
    AZHARA S H M, ABDULLAAB R, JAMBOA S A, et al. Yeasts insustainable bioethanol production:a review[J]. Biochemistry and Biophysics Reports, 2017, 10: 52-61. doi: 10.1016/j.bbrep.2017.03.003
    孙金凤,徐敏,张峰,等. 利用木糖和葡萄糖合成乙醇的新型重组大肠杆菌的研究[J]. 微生物学报,2004,44(5): 600-604. doi: 10.3321/j.issn:0001-6209.2004.05.010

    SUN Jinfeng, XU Min, ZHANG Feng, et al. Novel recombinant Escherichia coli producing ethanol from glucose and xylose[J]. Acta Microbiologica Sinica, 2004, 44(5): 600-604. doi: 10.3321/j.issn:0001-6209.2004.05.010
    MARTINEZ A, GRABAR T B, SHANMUGAM K T. et al. Low salt medium for lactate and ethanol production by recombinant Escherichia coli B[J]. Biotechnology Letters, 2007, 29(3): 397-404. doi: 10.1007/s10529-006-9252-y
    SOO C S, YAP W S, HON W M. Improvement of hydrogen yield by ethanol producing Escherichia coli recombinants in acidic condition[J]. Electronic Journal of Biotechnology, 2017, 26: 27-32. doi: 10.1016/j.ejbt.2016.12.007
    刘炳全,李学凤,高文. 木质纤维素制取燃料乙醇菌种的研究[J]. 可再生能源,2007,25(4): 53-55. doi: 10.3969/j.issn.1671-5292.2007.04.015

    LIU Bingquan, LI Xuefeng, GAO Wen. Study on ethanol production from biomass[J]. Renewable Energy Resources, 2007, 25(4): 53-55. doi: 10.3969/j.issn.1671-5292.2007.04.015
    路鹏. 抗水解液中抑制物的秸秆乙醇发酵菌剂构建及其功能研究[D]. 北京: 中国农业大学, 2007
    张文博. 木质纤维素组成和结构与里氏木霉产酶关联性的研究[D]. 南京: 南京林业大学, 2016
    任勰珂,陈莉,卢红梅. 多菌种混合固态发酵秸秆的研究[J]. 食品工业科技,2017(7): 130-134.

    REN Xieke, CHEN Li, LU Hongmei. Study on the solid state fermentation of straw with multiple strains[J]. Science and Technology of Food Industry, 2017(7): 130-134.
    ERDEI B, BARTA Z, SIPOS B, et al. Ethanol production from mixtures of wheat straw and wheat meal[J]. Biotechnol Biofuels, 2010, 3: 16-1-16-9. doi: 10.1186/1754-6834-3-16
    VIIKARI L, VEHMAANPERA J, KOIVULA A. Lignocellulosic ethanol:from science to industry[J]. Biomass & Bioenergy, 2012, 46: 13-24.
    NOVY V, KRAHULEC S, WEGLEITER M, et al. Process intensification through microbial strain evolution:mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2014, 7: 49-1-49-12. doi: 10.1186/1754-6834-7-49
    王晓娟,王斌,冯浩. 木质纤维素类生物质制备生物乙醇研究进展[J]. 石油与天然气化工,2007,36(6): 452-461. doi: 10.3969/j.issn.1007-3426.2007.06.005

    WANG Xiaojuan, WANG Bin, FENG Hao. Research development of bioethanol preparation from lignocellulosic biomass[J]. Modern Chemical Industry, 2007, 36(6): 452-461. doi: 10.3969/j.issn.1007-3426.2007.06.005
    ISHOLA M M, BRANDBERG T, TAHERZADEH M J. Simultaneous glucose and xylose utilization for improved ethanol production from lignocellulosic biomass through SSFF with encapsulated yeas[J]. Biomass Bioenergy, 2015, 77: 192-199. doi: 10.1016/j.biombioe.2015.03.021
    WATANABE I, MIYATA N, ANDO A, et al. Bioresource technology ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells[J]. Bioresource Technology, 2012, 123: 695-698. doi: 10.1016/j.biortech.2012.07.052
    NOVY V, LONGUS K, NIDETZKY B. From wheat straw to bioethanol:integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production[J]. Biotechnology for Biofuels, 2015, 8(1): 46-1-46-12. doi: 10.1186/s13068-015-0232-0
    LIU Y, QIU Z P, WANG G C. Optimized alkaline pretreatment technology of rice straw for ethanol production[J]. Advances in Engineering Research, 2015: 1169-1173.
    PENG Y, WU S. The structural and thermal characteristics of wheat straw hemicellulose[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(2): 134-139. doi: 10.1016/j.jaap.2010.03.006
    杨贵明,蒋爱华,薛秋生. 用DNS光度法测定还原糖的条件研究[J]. 安徽农业科学,2006,34(14): 3258-3264. doi: 10.3969/j.issn.0517-6611.2006.14.005

    YANG Guiming, JIANG Aihua, XUE Qiusheng. Study on the determination factor of reduced sugar with DNS spectrophotometry[J]. Journal of Anhui Agricultural Sciences, 2006, 34(14): 3258-3264. doi: 10.3969/j.issn.0517-6611.2006.14.005
    何敏超, 许敬亮, 陈小燕, 等. 用于生物质酶解过程的纤维素酶研究进展[J]. 农业工程学报, 2016, 32(增刊1): 290-296

    HE Minchao, XU Jingliang, CHEN Xiaoyan, et al. Progress of cellulase that using for biomass hydrolysis process[J]. Transactions of the Chinese Society of Agricutural Engineer, 2016, 32(S1): 290-296
    赵海峰. 液体深层发酵产纤维二糖酶及其在木质纤维素协同水解中的应用[D]. 杭州: 浙江大学, 2012
    王金成. Fe−Mn−Mg离子对稻草秸秆酶解糖化的影响[D]. 重庆: 重庆大学, 2015
    CHMIELEWSKA J. Selected biotechnological features of hybrids of Saccharomyces cerevisiae and Yamadazyma stipitis[J]. Biotechnology, 2003, 6(1): 1-13.
    CUEVAS M, SÁNCHEZ S, GARCIA J F, et al. Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones[J]. Renewable Energy, 2015, 74: 839-847. doi: 10.1016/j.renene.2014.09.004
    崔雨潇. 里氏木霉菌种选育及秸秆同步糖化发酵的研究[D]. 长春: 吉林大学, 2015
    AKHTAR N, GOYAL D, GOYAL A. Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF)[J]. Energy Conversion and Management, 2017, 141: 133-144. doi: 10.1016/j.enconman.2016.06.081
    赵鹏翔,卜令习,赵正凯. 提高菌株KE6-12对爆破秸秆同步糖化发酵适应性研究[J]. 可再生能源,2014,32(11): 23-27.

    ZHAO Pengxiang, BU Lingxi, ZHAO Zhengkai. Adaptability research on improve the strain KE6-12 for simultaneous saccharification and fermentation of blasting straw[J]. Renewable Energy Resources, 2014, 32(11): 23-27.
    ASADA C, SASAKI C, TAKAMATSU T. Conversion of steam-exploded cedar into ethanol using simultaneous saccharification,fermentation and detoxification process[J]. Bioresource Technology, 2015, 176: 203-209. doi: 10.1016/j.biortech.2014.11.039
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  206
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-01
  • 修回日期:  2018-08-14
  • 网络出版日期:  2019-01-11
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回