Energy Management Method for Hybrid Electric Tram Based on Dynamic Programming Algorithm
-
摘要: 针对传统动态规划算法在燃料电池混合动力系统能量分配中存在的误差累积问题,以及为进一步提高燃料电池混合动力有轨电车的耐久性和燃料经济性,提出了一种基于改进动态规划算法的燃料电池混合动力有轨电车能量管理方法;改进动态规划算法在传统动态规划的基础上调整了状态转移方程,通过只对系统状态量进行离散从而避免计算过程中的插值计算导致的误差累积;同时将系统等效氢耗、动力电池充电状态(SOC)约束和燃料电池加、减载带来的耐久性问题作为优化目标构成加权惩罚函数,使系统在获得良好燃料经济性的同时兼顾耐久性;将所提管理方法与功率跟随和传统动态规划进行对比分析. 研究结果表明:所提方法相较于功率跟随方法,使末态SOC值降低了13.3%,燃料经济性提高了78%;相较于基于传统动态规划算法的能量管理方法,使燃料经济性提高了3.5%,且SOC变化范围和燃料电池变载情况均具有显著改善.Abstract: Aiming at the errors accumulation of traditional dynamic programming algorithm in energy distribution of the fuel cell hybrid electric system, an energy management method for the fuel cell hybrid electric tram was proposed based on improved dynamic programming algorithm, which aims to further improve the durability and fuel economy of the fuel cell hybrid electric tram. The improved dynamic programming algorithm adjusted the state transition equation based on the traditional dynamic programming by discretizing the system state quantities, which avoided the errors accumulation caused by interpolation calculation. At the same time, the equivalent hydrogen consumption of the system, the constraint of the state of charge (SOC) and the durability problems brought from loading and unloading of fuel cells were considered as optimization objectives to constitute a weighted penalty function, which made the system could take into account durability while achieved better fuel economy. The proposed management method was compared with power following and traditional dynamic programming. The results show that the proposed method reduces the final state SOC by 13.3% and the fuel economy by 78% compared with the power-following method. Moreover, the proposed method improves the fuel economy by 3.5%, and both the SOC variation range and the load-carrying condition of the fuel cell have significantly improved compared with the traditional dynamic programming algorithm.
-
Key words:
- fuel cell /
- hybrid electric tram /
- improved dynamic programming /
- error accumulation /
- fuel economy
-
表 1 混合动力有轨电车主要参数
Table 1. Main parameters of the hybrid electric tram
参数 取值 母线电压/V 750 车辆编组 Mc-T-Mc 轴重/t 10.5 最高运行速度/(km•h−1) 70 最大坡度 5‰ 列车长度/m 30.19 列车宽度/m 2.65 列车自重/t 51.06 续驶里程/km 30 表 2 燃料电池模块参数
Table 2. Module parameters of fuel cell
参数 取值 总功率/kW 150 工作电压/V 465~730 最大电流/A 300 燃料 氢气 氧化剂 空气 额定空气流量/(L•min−1) 3 653 额定空气压力/kPa 206 工作温度/K 330 重量/kg 404 表 3 动力电池模块参数
Table 3. Module parameters of battery
参数 取值 额定电压/V 3.7 额定容量/(A•h) 10 内阻/Ω 1.5 放电截止电压/V 2 最大充电电压/V 4.1 最大放电电流/(A•h) 120 充电方式 CC/CA 循环寿命/次 10 000 重量/kg 0.3 表 4 性能指标对比
Table 4. Comparison of performance index
性能指标 氢耗量/g SOC 开始值 结束值 最大偏移 功率跟随
策略139.5 0.600 0 0.680 5 0.083 5 传统 DP 81.1 0.600 0 0.600 4 0.026 0 I-DP 78.3 0.600 0 0.600 4 0.013 2 -
陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报,2009,44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001CHEN Weirong, QIAN Qingquan, LI Qi. Inves-tigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001 陈维荣,刘嘉蔚,李奇,等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报,2017,37(16): 4712-4721.CHEN Weirong, LIU Jiawei, LI Qi, et al. Review and prospect of fault diagnosis methods for proton exchange membrane fuel cell[J]. Proceeding of the CESS, 2017, 37(16): 4712-4721. XIE C, XU X, BUJLO P, et al. Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure[J]. Journal of Power Sources, 2015, 279: 487-494. doi: 10.1016/j.jpowsour.2015.01.029 LI Qi, CHEN Weirong, LIU Zhixiang, et al. Develop-ment of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway[J]. Journal of Power Sources, 2015, 279: 267-280. doi: 10.1016/j.jpowsour.2014.12.042 HAN Ying, LI Qi, WANG Tianhong, et al. Multi-source coordination energy management strategy based on SOC consensus for a PEMFC-battery- supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 296-305. doi: 10.1109/TVT.2017.2747135 BANVAIT H, ANWAR S, CHEN Y. A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)[C]//American Control Conference. New York: IEEE, 2009: 3938-3943 YEDAVALI K, GUO L, ZINGER D S. Simple control system for a switcher locomotive hybrid fuel cell power system[J]. Industry Applications, IEEE Transaction, 2010, 47(6): 2384-2390 MARTIN S, LARS E. Design and evaluation of energy management using map-based ECMS for the PHEV benchmark[J]. Oil & Gas Science & Technology, 2015, 70(1): 159-178. 林歆悠,孙冬野,秦大同,等. 混联式混合动力客车全局优化控制策略研究[J]. 中国机械工程,2011,22(18): 2259-2263.LIN Xinyou, SUN Dondye, QIN Datong, et al. Development of power-balabcing global optimization control strategy for a series-parallel hybrid electric city bus[J]. China Mechanical Engineering, 2011, 22(18): 2259-2263. PÉREZ L V, BOSSIO G R, MOITRE D. Optimization of power management in an hybrid electric vehicle using dynamic programming[J]. Mathematics and Computers in Simulation, 2006, 73(1): 244-254. RURGLADDAPAN J, UTHAICHANA K, KAEW-KHAM-AI B. Li-ion battery sizing and dynamic programming for optimal power-split control in a hybrid electric vehicle[C]//International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. [S.l.]: IEEE, 2012: 1-5. XU L, OUYANG M, LI J, et al. Dynamic programming algorithm for minimizing operating cost of a PEM fuel cell vehicle[C]//Proceedings of the 21st IEEE International Symposium on Industrial Electronics. Hangzhou: IEEE, 2012: 28-31 FARES D, CHEDID R, PANIK F, et al. Dynamic programming technique for optimizing fuel cell hybrid vehicles[J]. International Journal of Hydrogen Energy, 2015, 40(24): 7777-7790. doi: 10.1016/j.ijhydene.2014.12.120 舒红,蒋勇,高银平. 中度混合动力汽车模型预测控制策略[J]. 重庆大学学报,2010,33(1): 36-41.SU Hong, JIANG Yong, GAO Yinping. Model predictive control strategy of a medium hybrid electric vehicle[J]. Journal of Chongqing University, 2010, 33(1): 36-41. SHEN C Y, XIA C Y. Notice of retractionoptimal power split in a hybrid electric vehicle using improved dynamic programming[C]//Power & Energy Engineering Conference. [S.l.]: IEEE, 2010. 宋珂,张涛,牛文旭,等. 燃料电池汽车能量管理动态规划算法的误差累积问题及解决方法[J]. 汽车工程,2017,39(3): 249-255.SONG Ke, ZHANG Tao, NIU Wenxu, et al. Error accumulation problem and solution of dynamic programming algorithm for energy management of fuel cell electric vehicles[J]. Automotive Engineering, 2017, 39(3): 249-255. 陈维荣,卜庆元,刘志祥,等. 燃料电池混合动力有轨电车动力系统设计[J]. 西南交通大学学报,2016,51(3): 430-436. doi: 10.3969/j.issn.0258-2724.2016.03.003CHEN Weirong, BU Qingyuan, LIU Zhixiang, et al. Power system design for a fuel cell hybrid power tram[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 430-436. doi: 10.3969/j.issn.0258-2724.2016.03.003 陈维荣,张国瑞,孟翔. 等. 燃料电池混合动力有轨电车动力性分析与设计[J]. 西南交通大学学报,2017,52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001CHEN Weirong, ZHANG Guorui, MENG xiang, et al. Dynamic performance analysis and design of fuel cell hybrid locomotive[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001 邹渊, 侯仕杰, 韩尔樑, 等.基于动态规划的混合动力商用车能量管理策略优化[J].汽车工程, 2012, 34(8): 663-668.ZHOU Yuan, HOU Shijie, HAN Erliang, et al. Dynamic programming-based energy management strategy optimization for hybrid electric commercial vehicle[J]. Automotive Engineering, 2012, 34(8): 663-668. 邓涛, 韩海硕, 罗俊林.基于动态规划算法的混合动力汽车改进型ECMS能量管理控制研究[J].中国机械工程, 2018, 29(3): 326-332.DENG Tao, HAN Haishuo, LUO Junlin. Improved ECMS energy management control of HEVs based on DP algorithm[J]. China Mechanical Engineering, 2018, 29(3): 326-332 PAGANELLI G, ERCOLE G, BRAHMA A, et al. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles[J]. Jsae Review, 2001, 22(4): 511-518. doi: 10.1016/S0389-4304(01)00138-2