• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

电-氢孤岛直流微电网的分层能量管理

李奇 蒲雨辰 韩莹 陈维荣

巩磊, 何派, 石勇, 祝长生. 主动磁悬浮轴承非奇异快速终端滑模转子位置控制[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20240090
引用本文: 李奇, 蒲雨辰, 韩莹, 陈维荣. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报, 2020, 55(5): 912-919. doi: 10.3969/j.issn.0258-2724.20180457
GONG Lei, HE Pai, SHI Yong, ZHU Changsheng. Non-Singular Fast Terminal Sliding Mode Rotor Position Control of Active Magnetic Bearings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240090
Citation: LI Qi, PU Yuchen, HAN Ying, CHEN Weirong. Hierarchical Energy Management for Electric-Hydrogen Island Direct Current Micro-grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919. doi: 10.3969/j.issn.0258-2724.20180457

电-氢孤岛直流微电网的分层能量管理

doi: 10.3969/j.issn.0258-2724.20180457
基金项目: 国家自然科学基金(51977181);四川省科技计划项目(19YYJC0698);霍英东教育基金会高等院校青年教师基金(171104);国家重点研发计划(2017YFB1201003-019)
详细信息
    作者简介:

    李奇(1984—),男,教授,研究方向为轨道交通新能源技术、综合能源系统运行与控制等,E-mail:liqi0800@163.com

Hierarchical Energy Management for Electric-Hydrogen Island Direct Current Micro-grid

  • 摘要: 为了实现电-氢混合储能微电网的控制与运行,提出一种该类孤岛直流微电网的全天候能量管理方法,在满足负载需求功率、控制母线电压的基础上,将微网多余电能向化学能及氢能转化,且将储存的能量通过燃料电池及蓄电池适时运用于微网功率缺额的情况;通过对各电源、负载设备DC/DC变换器控制以及管理层的协调控制,实现了该系统的能量管理;基于MATLAB/Simulink软件平台,验证了该文能量管理方法的有效性. 研究结果表明:电-氢微电网在运行过程中母线电压波动幅度小于0.33%,远小于5.00%的运行要求;锂电池等效荷电状态及储氢罐等效荷电状态初末值变化幅度分别为4.0%和0.2%,储能系统运行稳定;该能量管理方法能够在保持电-氢系统稳定运行的前提下,无需外界提供额外能量即可确保该系统的全天候正常运行.

     

  • 在大功率高转速旋转机械系统中,主动磁悬浮轴承(AMBs)具有无摩擦、无润滑等优点,使得其得到了广泛的应用[1-4]. 然而,如何控制AMBs转子稳定悬浮于期望位置一直以来是一个重要问题. AMBs是一个典型的非线性系统,一般采用局部线性化的方法进行建模[5],进而应用线性控制或非线性控制对其进行精确控制[6]. 工程上一般采用PID控制[7-8],但AMBs在运行中会受到一些扰动,同时工况的改变会使得PID控制的鲁棒性大幅减弱. 因此,需要控制器自身具有较强的鲁棒性以克服AMBs系统的内扰和外扰,从而有效地提高其可靠性.

    众多鲁棒控制算法中,滑模控制(SMC)具有适应性强、鲁棒性好、对未知参数和干扰不敏感、易于实现等优点,被广泛应用于包括AMBs在内的各种非线性系统. 然而,简单的滑模控制采用线性滑模函数,系统误差通常只能缓慢地渐近收敛,进而有学者采用基于动态非线性滑模函数的终端滑模控制方法,可以使得系统误差在有限的时间内实现快速收敛[9]. 文献[10]中提出的双滑模控制器用于对开关磁阻电机进行调速;文献[11]针对伺服电机系统设计了一种新的连续终端滑模控制器,能够有效提高系统的鲁棒性;文献[12]针对永磁直线同步电动机位置控制问题,采用非奇异快速终端滑模,从而使系统获得快速、精确的跟踪性能;文献[13]设计了滑模自抗扰控制器,实现了对AMBs的各自由度的解耦,减小了AMBs在高速运转下锥动对控制效果的影响;文献[14]在磁悬浮球系统中将自适应控制与终端滑模控制结合,以此来减小系统抖振,改善悬浮系统的动态性能;文献[15]在磁悬浮球系统中将广义比例积分观测器与终端滑模控制结合,避免切换函数增益过大,有效地减小了系统抖振.

    除了对滑模函数的设计,趋近律也需要进行优化,传统趋近律的切换增益为常数,系统抖振的大小与切换增益的大小有关. 超螺旋趋近律把切换增益改为与系统状态有关的幂函数,同时还利用积分函数对切换函数进行处理. 因此,超螺旋趋近律能够使系统状态在滑模面附近平滑且切换增益较小,减小系统抖振[16-17]. WANG等[18]将超螺旋趋近律与非奇异快速终端滑模相结合(SNFTSMC),以实现减小抖振并加快系统误差收敛.

    在AMBs系统中,传感器跳动、电磁场波动等外部因素经常会导致AMBs转子位置控制的精度受到影响,而且AMBs系统在建模过程中对系统做了线性化,也导致AMBs数学模型含有未建模部分. 虽然采用SNFTSMC能够抑制未建模部分和外部扰动带来的影响,但这需要增大切换增益,又会造成系统抖振. 因此,SNFTSMC在抑制抖振和扰动之间存在一定的矛盾. 此时,将未建模部分与外部扰动看作一个集总干扰,利用扩张状态感测器(ESO)对集总干扰进行观测,然后补偿给系统,这种方法在伺服系统中已经得到了广泛的应用[19-20]. 通常,线性ESO(LESO)参数易于整定,而非线性ESO(NESO)收敛精度高、鲁棒性强 [21-22].

    因此,针对主动磁悬浮轴承转子位置控制中存在响应速度慢、抗干扰能力弱2个问题,本文采用SNFTSMC作为控制算法,并通过ESO对集总干扰观测并补偿到系统中. 由于LESO对于AMBs非线性系统观测效果较差,因此,本文采用了NESO观测器. 根据李雅普诺夫稳定理论证明了所提方法的稳定性,并通过仿真和实验验证了系统具有强的鲁棒性以及低抖振性能.

    以径向单自由度的AMBs为研究对象,研究转子起浮运动. 单自由度AMBs系统通过传感器获得转子实际位移y;实际位移y与期望位置yr的误差e1输入到控制器中,控制器进行运算得到控制信号;之后,在与偏置信号进行差分;最后,将差分后的信号输送到功放器中产生相应的电流,电流被送到电磁铁线圈中,电磁铁产生吸力将转子吸引到期望位置. 具体工作原理如图1.

    图  1  单自由度AMBs系统原理
    Figure  1.  Principle of single-degree-of-freedom AMB system

    AMBs采用8级C型结构,根据麦克斯韦公式,2个磁极作用在转子上的电磁力为

    f=μ0n2i2Acosα/l2,
    (1)

    式中:i为线圈通入的电流,l为气隙长度,A为单个磁极截面积,μ0为真空磁导率,α为磁极之间夹角的一半,n为线圈匝数.

    电磁铁对转子的控制方式为差动控制,在垂直方向上以(i0y0)作为参考点,如图2. 当转子向上运动的位移为y时,转子与上方电磁铁之间的气隙间距变成y0y,则上方电磁铁线圈输入的工作电流为i0i;转子与下方电磁铁之间的气隙间距变成y0+y,下方电磁铁线圈输入的工作电流为i0+i,此时,在垂直方向上的合力为

    图  2  差动控制原理图
    Figure  2.  Principle of differential control
    f(i,y)=μ0An2[(i0iy0y)2(i0+iy0+y)2]cosα.
    (2)

    式(2)中将yi作为参考点(i0y0)的邻域,在参考点(i0y0)处对fiy)进行泰勒展开,如式(3).

    f(i,y)=kii+ksy+fR,
    (3)

    式中:fR为高次项部分(也称未建模部分);kiks分别为电流刚度系数和位移刚度系数,如式(4)、(5).

    ki=4μ0N2i0Acosα/y20,ks=4μ0N2i20Acosα/y30.
    (4)

    将重力mg、未知扰动fd都考虑到系统中,则系统的状态方程为

    {y=y1,˙y1=y2,˙y2=b0i+a0y1+d,
    (5)

    式中: a0为位移增益,a0=ki/mb0为位移增益,b0=ks/md为集总干扰,d=(fR + fdmg)/m.

    基于磁悬浮转子系统的数学模型,设计了非奇异快速终端滑模函数结构,具体表达式如式(6),相应结构如图3.

    图  3  非奇异快速终端滑模函数结构
    Figure  3.  Structure of non-singular fast terminal sliding mode function
    s=e1+k1|e1|asign(e1)+k2|e2|bsign(e2),
    (6)

    式中:k1k2ab为调节系数,k1>0,k2>0,1<b<2,a>be1=y1−yre2=˙y1˙yr.

    滑模面为滑模函数s=0,令式(6)为0,得到

    0=e1+k1|e1|asign(e1)+k2|e2|bsign(e2).
    (7)

    设误差e1从初始值e1(0)收敛到0所用的时间为tf,对式(7)进行求解,得到tf的解为[11]

    tf=|e1(0)|0k1/b2(e1+k1xa)1/bde1=b|e1(0)|11/bk1(b1)×F(1b,b1(a1)b;1 + b1(a1)b;k1|e1(0)|a1),
    (8)

    式中:F(·)为高斯几何函数.

    对式(6)求导为

    ˙s=e2+ak1|e1|a1e2+bk2|e2|b1˙e2.
    (9)

    忽略式(5)中集总干扰d˙s=0,可以得到等效控制器为

    ieq=1b0(¨yra0y11bk2|e2|2b(1+ak1|e1|a1)sign(e2)).
    (10)

    为了加快趋近速度和减小控制过程中出现的抖 振,采用超螺旋趋近律,具体表达式如式(11),其结构如图4.

    图  4  超螺旋趋近律结构
    Figure  4.  Structure of super-twisting reaching law

    超螺旋趋近律的具体表达式为

    ˙s=k3|s|csign(s)k4sign(s)dt,
    (11)

    式中:k3k4c为调节系数,k3>0,k4>0,0<c<1.

    滑模函数s距离滑模面s=0较远时,k3|s|c值较大,滑模函数s以较大的速度靠近滑模面s=0;滑模函数s距离滑模面s=0较小时,k3|s|csign(s)值较小,滑模函数s以较小的速度靠近滑模面s=0. 滑模函数中sign函数的切换增益(k3|s|c)的大小决定抖振剧烈程度,采用超螺旋趋近律既能削弱抖振又能加快系统收敛.

    为了能够进一步加快滑模函数s到达滑模面s=0的速度及削弱抖振,可采用式(12)所示的趋近律.

    {˙s=k3|s|gsign(s)k4sign(s)dt,g=γλeη|e1|,
    (12)

    式中:γλη均为可调系数,g为关于γλη的指数函数,γ>1,0<λη>0.

    由式(12)可知,随着e1从初值e1(0)衰减到0,g从最初的较大值γλeη|e1(0)|衰减到γλ,在这个过程中k3|s|g能够以更快的速度从较大值衰减到0,从而加快滑模函数s到达滑模面s=0的速度和减小抖振.

    因此,定义AMBs转子系统的切换控制器为

    isw=1b0[k3|s|gsign(s)k4sign(s)dt].
    (13)

    考虑到系统存在集总干扰,总的控制器为

    ic=ieq+isw1b0Msign(s),
    (14)

    式中:M为集总干扰d的上界,即d|M|.

    为了证明SNFTSMC控制器的稳定性,构造李雅普诺夫函数为

    V(s)=12s2,
    (15)
    ˙V(s)=s˙s=s[e2+ak1|e1|a1e2+bk2|e2|b1˙e2]=s[e2+ak1|e1|a1e2+bk2|e2|b1(b0ic+a0y1+d¨yr)]=s[e2+ak1|e1|a1e2+bk2|e2|b1(b0iswMsign(s)+d1bk2|e2|2b(1+ak1|e1|a1)×sign(e2))]=s[bk2|e2|b1(dMsign(s)+b0isw)]=bk2|e2|b1(dsM|s|k3|s|g+1k4|s|dt).
    (16)

    e2≠0时,已知k2k3k4b均大于0,且|d|M,那么此时有

    ˙V(s)<bk2|e2|b1(k3|s|g+1k4|s|dt)<0.
    (17)

    此时,滑模函数s将在有限时间内到达滑模面s=0.

    e2=0时,联立式(14)与式(5)中,有

    ˙e2=k3|s|gsign(s)k4sign(s)dt+dMsign(s).
    (18)

    根据式(18),当滑模函数s>0时,˙e2<0;当滑模函数s<0时,˙e2<0. 图5为该控制器下的系统相轨迹,以滑模函数s2为例,e2=0、˙e2<0时,e2必然会在某个邻域(0, + δ)内减小,此时滑模函数s2会必然会向下运动;当滑模函数s2到达邻域(0, + δ)时,e2≠0,滑模函数s2将会根据式(17)得出的结论到达滑模面s=0,滑模函数s4同理.

    图  5  AMBs系统相轨迹
    Figure  5.  Phase trajectory of AMB system

    集总干扰d是未知的,很难确定其具体的上界,而为了保证系统的稳定,一般上界M取值较大,将会加剧系统抖振. 为避免这种情况,本文通过设计ESO,并利用ESO对集总干扰d进行观测,得到较精确的观测值,然后将观测值补偿到控制器中. 本节先后分别对LESO与NESO进行研究与分析.

    对于二阶的AMBs转子系统,将集总干扰d扩张为新的状态变量y3,式(5)可以改写为

    {˙y1=y2,˙y2=b0i+a0y1+y3,˙y3=h,
    (19)

    式中:h为集总干扰d的变化率.

    根据式(19)可以写出LESO表达式为

    {˙z1=z2L1θ1,˙z2=b0i+a0z1+z3L2θ1,˙z3=L3θ1,
    (20)

    式中:L1L2L3为LESO增益,z1z2z3分别为y1y2y3的观测值,θ1=z1y1为观测误差.

    式(20)减去式(19)得到误差状态方程为

    {˙θ1=θ2L1θ1,˙θ2=a0θ1+θ3L2θ1,˙θ3=hL3θ1,
    (21)

    式中:θ2=z2y2θ3=z3y3.

    式(21)经过拉普拉斯变换后,有

    {θ2(s)=(s+L1)θ1(s),θ3(s)=sθ2(s)+(L2a0)θ1(s),h(s)=sy3(s)=sθ3(s)L3θ1(s).
    (22)

    整理式(22),得到θ3与−y3之间的传递函数为

    θ3y3=s3+L1s2+(L2a0)ss3+L1s2+(L2a0)s+L3.
    (23)

    为了使系统能够稳定,假设式(23)有3个极点(s1s2s3)都位于左半平面,p1=−ω0p2=−0.5ω0 + j0.5ω0p3=−0.5ω0−j0.5ω0ω0为带宽并大于0,那么有

    s3+L1s2+(L2a0)s+L3=(sp1)(sp2)(sp3).
    (24)

    可以解得

    [L1L2L3]=[2ω01.5ω20+a00.5ω30].
    (25)

    将式(25)带到式(23)中可得

    θ3y3=s3+2ω0s2+1.5ω20ss3+2ω0s2+1.5ω20s+0.5ω30.
    (26)

    根据式(26)做出不同带宽下的Bode图,如图6. 图6中:y3频率较低时,z3y3的跟踪效果较好;随着y3频率的增大,z3y3的跟踪性能逐渐变差;带宽增大后,z3y3跟踪效果逐渐变好,但带宽太大容易对系统中其他噪声敏感.

    图  6  不同带宽下的Bode图
    Figure  6.  Bode plots with different bandwidths

    由于LESO对集总扰动观测精度有限,现采用NESO对集总干扰进行观测,将式(20)改写为

    {˙z1=z2β1u1(θ1),˙z2=b0i+a0z1+z3β2u2(θ1),˙z3=β3u3(θ1),
    (27)

    式中:β1β2β3为待设计的观测器增益,均大于0;u1(θ1)、u2(θ1)、u3(θ1)为关于θ1的非线性函数,如式(28).

    {u1(θ1)=θ1,u2(θ1)=|θ1|12sign(θ1),u3(θ1)=|θ1|14sign(θ1).
    (28)

    NESO的参数一般很难通过理论去整定,通常根据经验来进行设计. 选择合适的β1β2β3,能够使得观测误差θ1θ2θ3在有限时间内收敛到0.

    NESO的结构框图如7.

    图  7  NESO结构图
    Figure  7.  Structure of NESO

    式(14)中所提到的sign函数切换增益为(k3|s|g+M)/b0,其中k3|s|g/b0的大小与系统状态有关,产生的抖振很小,而M/b0为常值,会导致系统产生较大抖振. 因此,需要通过NESO对系统抖振进行补偿,进一步将控制器设计为

    ic=ieq+isw1b0z3.
    (29)

    接着,为了验证所提方法对系统稳定性产生的影响,对式(29)进行李亚普诺夫稳定性分析,即

    ˙V(s)=s˙s=s[bk2|e2|b1(d+b0iswz3)]=bk2|e2|b1(dsz3sk3|s|g+1k4|s|dt)<bk2|e2|b1(k3|s|g+1+|θ3||s|k4|s|dt).
    (30)

    根据对NESO的设计,θ3会收敛到0,可得到:

    ˙V(s)<bk2|e2|b1(k3|s|c+1k4|s|dt)<0.
    (31)

    通过分析得知,滑模函数s能够在有限时间内到达滑模面s=0,有效证明了所提方法的稳定性,进而搭建如图8所示的AMBs系统整体控制结构.

    图  8  AMBs系统整体控制结构
    Figure  8.  Overall control structure of AMB system

    表1为AMBs具体参数.

    表  1  AMBs参数
    Table  1.  Parameters of AMBs
    参数
    磁极面积/mm2 720
    匝数/圈 150
    气隙长度/mm 0.4
    偏置电流/A 2
    转子质量/kg 15
    电流刚度系数/(N·A−1 939.5
    位移刚度系数/(N·mm−1 4697.5
    下载: 导出CSV 
    | 显示表格

    为了能够对比出SNFTSMC的优越性能,在验证中加入传统SMC,表2为各个控制器参数.

    表  2  控制器参数
    Table  2.  Parameters of controller
    控制器
    SNFTSMCk1=1、k2=0.1、k3=80、k4=50、a=2.5、b=1.5、γ=1.5、λ=1、η=0.5、M=15
    SMCk1=30、k2=50、c=10、M=15
    下载: 导出CSV 
    | 显示表格

    忽略集总扰动时SNFTSMC、SMC分别为

    {iSNFTSMC=ieq+isw,iSMC =1b0[¨yrce2a0y1k1sk2sign(s)].
    (32)

    定义控制电流平均值为

    iavg=Nj=1|ij|N,
    (33)

    式中:ij为第j个采样点的电流值,1≤jNN为采样点数.

    根据式(32)中的控制器进行仿真,图9为起浮测试下的位移与控制电流. SNFTSMC、SMC到达目标位置的时间分别为0.38、0.62 s,SNFTSMC、SMC的最大控制电流分别为3.14、4.56 A. 根据式(33)得到SNFTSMC与SMC的电流平均值为分别为0.24、0.89 A.

    图  9  转子起浮位移和电流信号
    Figure  9.  Displacement and current signal in case of rotor suspension

    为探究控制器的追踪性能,对正弦波、方波进行追踪. 图10为正弦追踪下的结果,SNFTSMC、SMC追踪到正弦波的时间分别为0.41、0.62 s,控制电流最大值分别为3.60、6.17 A,电流平均值分别为1.04、1.16 A. 图11为方波追踪下的仿真结果,将方波追踪中4个阶段的稳定时间间隔累加起来,SNFTSMC、SMC所用时间分别为1.24、2.36 s;控制电流最大值分别为3.12、4.56 A;电流平均值分别为0.24、0.89 A.

    图  10  正弦追踪中转子位移和电流信号
    Figure  10.  Displacement and current signal of rotor under sinusoidal trace
    图  11  方波追踪中转子位移和电流信号
    Figure  11.  Displacement and current signal of rotor under square wave trace

    为对比LESO与NESO的观测性能,对正弦扰动sin(2πfot)进行观测,其频率fo从0增加到300 Hz. LESO带宽为500,NESO的观测增益β1β2β3分别为15000300050000. 图12为2种ESO对正弦信号的观测结果. 随着频率增大,2种ESO的观测性能均随之下降;在低频段中NESO观测器性能较好,其观测误差很小,而LESO在低频段中其观测误差依然很大,并且此时还是在LESO带宽取值较大的情况下. 因此,LESO观测性能不如NESO. 所以选用NESO对集总干扰进行观测.

    图  12  ESO观测结果
    Figure  12.  Observation results with ESO

    将外部扰动与未建模部分对考虑到系统中,SNFTSMC的控制器设计为式(14),SMC设计为

    iSMC=1b0[¨yrce2a0y1k1s(k2+M)sign(s)].
    (34)

    假设集总干扰d=−12.5 + 2.5sin(20πt),采用考虑到集总干扰而设计的控制器进行仿真,图13为抗干扰测试下的转子位移波形与控制电流波形. 由图13可知:SNFTSMC、SMC到达目标位置的时间分别为0.45、0.63 s,相较于没有集总干扰的情况下系统收敛时间增加;控制电流最大值分别为3.38、4.80 A,控制电流平均值分别为0.43、1.18 A;考虑到扰动后控制电流最大值与控制电流平均值都略微增大,并且SMC抖振加剧、SNFTSMC产生了小幅度抖振.

    图  13  集总干扰作用下转子起浮位移和电流信号
    Figure  13.  Displacement and current signal in case of rotor suspension under lumped interference

    集总干扰的存在会增大抖振,将SNFTSMC与NESO相结合,以此来减小由集总扰动引起的系统抖振. 图14为SNFTSMC+NESO、SMC+NESO这2种控制方法的仿真结果. 由图14可知:SNFTSMC+NESO、SMC+NESO到达目标位置的时间分别为0.40 s、0.62 s,与没有集总干扰的情况下系统收敛时间相近,即NESO能够消除集总干扰带来的影响;SNFTSMC+NESO、SMC+NESO在稳定时位移误差均为0,控制电流最大值分别为3.14、4.56 A,控制电流平均值分别为0.44、0.90 A.

    图  14  NESO补偿后转子起浮位移和电流信号
    Figure  14.  Displacement and current signal in case of rotor suspension with NESO compensation

    为验证所提方法的正确性和有效性,搭建了基于RT-Lab的磁悬浮轴承转子系统实验平台. 实验装置由磁悬浮电机性能测试平台、功放测试平台、径向磁悬浮轴承和轴向磁悬浮轴承等组成,如图15所示.

    图  15  磁悬浮高速电机转子系统实验平台
    Figure  15.  Experimental platform of rotor system with magnetic suspension high-speed motor

    首先,通过采用SNFTSMC、SMC 2种控制器进行转子起伏测试,转子起浮位移和电流信号如图16所示. 可以得知,采用SNFTSMC、SMC转子从底端上升到目标位置所用的时间分别为0.41、0.94 s,并且SMC的控制电流存在剧烈的抖振,SNFTSMC、SMC的电流平均值分别为0.53、1.68 A.

    图  16  转子起浮位移和电流信号
    Figure  16.  Displacement and current signal in case of rotor suspension

    其次,为验证控制器的抗干扰性能,对转子施加正弦扰动进行起浮测试,转子起浮位移和电流信号如图17所示. 图17中SNFTSMC、SMC到达目标位置所用的时间分别为0.43、0.98 s,SNFTSMC、SMC的电流平均值分别为0.84、2.00 A,并且SNFTSMC也产生了抖振.

    图  17  扰动作用下转子起浮位移和电流信号
    Figure  17.  Displacement and current signal in case of rotor suspension under interference

    最后,引入NESO来对干扰进行补偿,转子位移和控制电流如图18所示. 图18中SNFTSMC+NESO和SMC+NESO到达目标位置所用的时间分别为0.42、0.95 s,其电流平均值分别为1.65、0.66 A,2种控制器下的电流抖振得到了有效减小.

    图  18  NESO补偿后转子起浮位移和电流信号
    Figure  18.  Displacement and current signal in case of rotor suspension with NESO compensation

    1) 工程设计中由于考虑算法的简明性,通常会采用传统滑模控制器,若要提高主动磁悬浮轴承转子位置的动态控制性能,可将传统滑模控制率改进为本文所提出超螺旋趋近律.

    2) 非奇异快速终端滑模函数的设计能够使系统误差得到快速收敛,而超螺旋趋近律利用幂函数以及对滑模函数的积分使得切换增益在滑模面s=0处较小,实际工况中可根据快速性和鲁棒性要求进行选择滑模函数和趋近律的设计.

    3) 引入的NESO能够对系统内外扰动进行观测并补偿到系统中,有效减小扰动对控制结果的影响,但实际工况下观测值补偿可能是离线的,在线补偿对控制器设计要求较高. 特别是要考虑观测器引起的相位滞后,在控制器设计过程中选择合适的前馈补偿将相位进行补偿.

    致谢:感谢陕西省教育厅一般专项(青年)23JK0339资助;海洋工程全国重点实验室(上海交通大学)专项经费号GKZD010089.

  • 图 1  孤岛微电网拓扑结构

    Figure 1.  Topological structure of micro-grid

    图 2  孤岛直流微电网系统控制

    Figure 2.  Control diagram of island DC micro-gid

    图 3  储能系统约束

    Figure 3.  Constraint of energy storage system

    图 4  储能系统功率分配系数曲线及系统滞环

    Figure 4.  Power distribution coefficient and hysteresis loop of hydrogen storage system

    图 5  负载工况曲线

    Figure 5.  Curves of load consumption

    图 6  系统功率变化曲线

    Figure 6.  Power curves of system

    图 7  系统SOCSOHC变化曲线

    Figure 7.  Curves of SOC and SOHC

    图 8  产氢、耗氢速率及母线电压曲线

    Figure 8.  Rate of production and consumption of hydrogen and the curve of bus voltage

    表  1  微源参数

    Table  1.   Parameters of micro sources

    微源参数数值
    锂电池容量/(A•h)300
    SOC 初值/%40
    最大功率/W ± 1 500
    储氢罐体积/L18
    最大压强/MPa35
    SOHC 初值/%39.0
    电解槽最大功率/W2 500
    燃料电池最大功率/W1 260
    输出电压/V24
    下载: 导出CSV
  • REZAEI M, MOHSENI M. A predictive control based on neural network for dynamic model of proton exchange membrane fuel cell[J]. Journal of Fuel Cell Science and Technology, 2013, 10(3): 035001.
    AGBOSSOU K, KOLHE M, HAMELIN J, et al. Performance of a stand-alone renewable energy system based on energy storage as hydrogen[J]. IEEE Trans Energy Convers, 2004, 19(3): 633-640. doi: 10.1109/TEC.2004.827719
    MEHRPOOYA M. Dynamic modeling of a hybrid Photovoltaic system with hydrogen/air PEM fuel cell[J]. Iranica Journal of Energy & Environment, 2013, 4(2): 4-9.
    UZUNOGLU M, ONAR O C, ALAM M S. Modeling,control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications[J]. Renew Energy, 2009, 34(3): 9-20.
    KRAA O, GHODBANE H, SAADI R, et al. Energy management of fuel cell/supercapacitor hybrid source based on linear and sliding mode control[J]. Energy Procedia, 2015, 74(12): 58-64.
    REKIOUA D, BENSMAIL S, BETTAR N. Development of hybrid photovoltaic-fuel cell system for stand-alone application[J]. International Journal of Hydrogen Energy, 2014, 39(3): 4-11.
    张计科,王生铁. 独立运行风光互补发电系统能量优化管理协调控制策略[J]. 太阳能学报,2017,38(10): 2894-2903.

    ZHANG Jike, WANG Shengtie. Coordinated control strategy with energy optimum management of stand-alone wind/pv hybrid generation system[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2894-2903.
    HAN Ying, CHEN Weirong, LI Qi. Energy management strategy based on multiple operating states for a photovoltaic/fuel cell/energy storage DC microgrid[J]. Energies, 2017, 136(10): 1-15.
    蔡国伟,孔令国,彭龙,等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报,2016,37(10): 2451-2459. doi: 10.3969/j.issn.0254-0096.2016.10.001

    CAI Guowei, KONG Lingguo, PENG Long, et al. Modeling and control of active PV generation system based on hydrogrn storage[J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2451-2459. doi: 10.3969/j.issn.0254-0096.2016.10.001
    王天宏,李奇,陈维荣. 负载均流的自适应虚拟阻抗下垂控制方法[J]. 西南交通大学学报,2017,52(5): 1020-1028. doi: 10.3969/j.issn.0258-2724.2017.05.025

    WANG Tianhong, LI Qi, CHENG Weirong. Adaptive virtual impedance droop control method in load sharing[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 1020-1028. doi: 10.3969/j.issn.0258-2724.2017.05.025
    IPSAKIS D, VOUTETAKIS S, PANOS S, et al. Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage[J]. International Journal of Hydrogen Energy, 2009, 34(16): 7081-7095. doi: 10.1016/j.ijhydene.2008.06.051
    LAJNEF T, ABID S, AMMOUS A. Modeling,control,and simulation of a solar hydrogen/fuel cell hybrid energy system for grid-connected applications[J]. Advances in Power Electronics, 2013(4): 1-9.
    NASRI S, SLAMA B S, ADNANE C. Power management strategy for hybrid autonomous power system using hydrogen storage[J]. International Journal of Hydrogen Energy, 2016, 41(2): 857-865. doi: 10.1016/j.ijhydene.2015.11.085
    NASRI S, SLAMA B S, YAHYAOUI I, et al. Autonomous hybrid system and coordinated intelligent management approach in power system operation and control using hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9511-9523. doi: 10.1016/j.ijhydene.2017.01.098
    MARCHENKO O V, SOLOMIN S V. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9361-9370. doi: 10.1016/j.ijhydene.2017.02.076
    李奇,杨寒卿,韩莹,等. 光伏并网发电系统参数协调优化方法研究[J]. 西南交通大学学报,2016,51(5): 894-901. doi: 10.3969/j.issn.0258-2724.2016.05.011

    LI Qi, YANG Hanqing, HAN Ying, et al. Method of parameter coordination optimization for grid-connected photovoltaic system[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 894-901. doi: 10.3969/j.issn.0258-2724.2016.05.011
    KHAN M J, IQBAL M T. Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system[J]. Renewable Energy, 2005, 30(3): 421-439. doi: 10.1016/j.renene.2004.05.013
    HAN Ying, LI Qi, WANG Tianhong, et al. Multisource coordination energy management strategy based on SOC consensus for a PEMFC-battery-supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 296-305. doi: 10.1109/TVT.2017.2747135
    MARUF-UL-KARIM M, IQBAL M T. Dynamic modeling and simulation of alkaline type electrolyzers[C]//Conference on Electrical and Computer Engineering. [S.l.]: IEEE, 2009: 711-715.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  943
  • HTML全文浏览量:  538
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 修回日期:  2019-02-27
  • 网络出版日期:  2019-02-28
  • 刊出日期:  2020-10-01

目录

/

返回文章
返回