• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

电-氢孤岛直流微电网的分层能量管理

李奇 蒲雨辰 韩莹 陈维荣

李奇, 蒲雨辰, 韩莹, 陈维荣. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报, 2020, 55(5): 912-919. doi: 10.3969/j.issn.0258-2724.20180457
引用本文: 李奇, 蒲雨辰, 韩莹, 陈维荣. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报, 2020, 55(5): 912-919. doi: 10.3969/j.issn.0258-2724.20180457
LI Qi, PU Yuchen, HAN Ying, CHEN Weirong. Hierarchical Energy Management for Electric-Hydrogen Island Direct Current Micro-grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919. doi: 10.3969/j.issn.0258-2724.20180457
Citation: LI Qi, PU Yuchen, HAN Ying, CHEN Weirong. Hierarchical Energy Management for Electric-Hydrogen Island Direct Current Micro-grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919. doi: 10.3969/j.issn.0258-2724.20180457

电-氢孤岛直流微电网的分层能量管理

doi: 10.3969/j.issn.0258-2724.20180457
基金项目: 国家自然科学基金(51977181);四川省科技计划项目(19YYJC0698);霍英东教育基金会高等院校青年教师基金(171104);国家重点研发计划(2017YFB1201003-019)
详细信息
    作者简介:

    李奇(1984—),男,教授,研究方向为轨道交通新能源技术、综合能源系统运行与控制等,E-mail:liqi0800@163.com

Hierarchical Energy Management for Electric-Hydrogen Island Direct Current Micro-grid

  • 摘要: 为了实现电-氢混合储能微电网的控制与运行,提出一种该类孤岛直流微电网的全天候能量管理方法,在满足负载需求功率、控制母线电压的基础上,将微网多余电能向化学能及氢能转化,且将储存的能量通过燃料电池及蓄电池适时运用于微网功率缺额的情况;通过对各电源、负载设备DC/DC变换器控制以及管理层的协调控制,实现了该系统的能量管理;基于MATLAB/Simulink软件平台,验证了该文能量管理方法的有效性. 研究结果表明:电-氢微电网在运行过程中母线电压波动幅度小于0.33%,远小于5.00%的运行要求;锂电池等效荷电状态及储氢罐等效荷电状态初末值变化幅度分别为4.0%和0.2%,储能系统运行稳定;该能量管理方法能够在保持电-氢系统稳定运行的前提下,无需外界提供额外能量即可确保该系统的全天候正常运行.

     

  • 图 1  孤岛微电网拓扑结构

    Figure 1.  Topological structure of micro-grid

    图 2  孤岛直流微电网系统控制

    Figure 2.  Control diagram of island DC micro-gid

    图 3  储能系统约束

    Figure 3.  Constraint of energy storage system

    图 4  储能系统功率分配系数曲线及系统滞环

    Figure 4.  Power distribution coefficient and hysteresis loop of hydrogen storage system

    图 5  负载工况曲线

    Figure 5.  Curves of load consumption

    图 6  系统功率变化曲线

    Figure 6.  Power curves of system

    图 7  系统SOCSOHC变化曲线

    Figure 7.  Curves of SOC and SOHC

    图 8  产氢、耗氢速率及母线电压曲线

    Figure 8.  Rate of production and consumption of hydrogen and the curve of bus voltage

    表  1  微源参数

    Table  1.   Parameters of micro sources

    微源参数数值
    锂电池容量/(A•h)300
    SOC 初值/%40
    最大功率/W ± 1 500
    储氢罐体积/L18
    最大压强/MPa35
    SOHC 初值/%39.0
    电解槽最大功率/W2 500
    燃料电池最大功率/W1 260
    输出电压/V24
    下载: 导出CSV
  • REZAEI M, MOHSENI M. A predictive control based on neural network for dynamic model of proton exchange membrane fuel cell[J]. Journal of Fuel Cell Science and Technology, 2013, 10(3): 035001.
    AGBOSSOU K, KOLHE M, HAMELIN J, et al. Performance of a stand-alone renewable energy system based on energy storage as hydrogen[J]. IEEE Trans Energy Convers, 2004, 19(3): 633-640. doi: 10.1109/TEC.2004.827719
    MEHRPOOYA M. Dynamic modeling of a hybrid Photovoltaic system with hydrogen/air PEM fuel cell[J]. Iranica Journal of Energy & Environment, 2013, 4(2): 4-9.
    UZUNOGLU M, ONAR O C, ALAM M S. Modeling,control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications[J]. Renew Energy, 2009, 34(3): 9-20.
    KRAA O, GHODBANE H, SAADI R, et al. Energy management of fuel cell/supercapacitor hybrid source based on linear and sliding mode control[J]. Energy Procedia, 2015, 74(12): 58-64.
    REKIOUA D, BENSMAIL S, BETTAR N. Development of hybrid photovoltaic-fuel cell system for stand-alone application[J]. International Journal of Hydrogen Energy, 2014, 39(3): 4-11.
    张计科,王生铁. 独立运行风光互补发电系统能量优化管理协调控制策略[J]. 太阳能学报,2017,38(10): 2894-2903.

    ZHANG Jike, WANG Shengtie. Coordinated control strategy with energy optimum management of stand-alone wind/pv hybrid generation system[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2894-2903.
    HAN Ying, CHEN Weirong, LI Qi. Energy management strategy based on multiple operating states for a photovoltaic/fuel cell/energy storage DC microgrid[J]. Energies, 2017, 136(10): 1-15.
    蔡国伟,孔令国,彭龙,等. 基于氢储能的主动型光伏发电系统建模与控制[J]. 太阳能学报,2016,37(10): 2451-2459. doi: 10.3969/j.issn.0254-0096.2016.10.001

    CAI Guowei, KONG Lingguo, PENG Long, et al. Modeling and control of active PV generation system based on hydrogrn storage[J]. Acta Energiae Solaris Sinica, 2016, 37(10): 2451-2459. doi: 10.3969/j.issn.0254-0096.2016.10.001
    王天宏,李奇,陈维荣. 负载均流的自适应虚拟阻抗下垂控制方法[J]. 西南交通大学学报,2017,52(5): 1020-1028. doi: 10.3969/j.issn.0258-2724.2017.05.025

    WANG Tianhong, LI Qi, CHENG Weirong. Adaptive virtual impedance droop control method in load sharing[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 1020-1028. doi: 10.3969/j.issn.0258-2724.2017.05.025
    IPSAKIS D, VOUTETAKIS S, PANOS S, et al. Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage[J]. International Journal of Hydrogen Energy, 2009, 34(16): 7081-7095. doi: 10.1016/j.ijhydene.2008.06.051
    LAJNEF T, ABID S, AMMOUS A. Modeling,control,and simulation of a solar hydrogen/fuel cell hybrid energy system for grid-connected applications[J]. Advances in Power Electronics, 2013(4): 1-9.
    NASRI S, SLAMA B S, ADNANE C. Power management strategy for hybrid autonomous power system using hydrogen storage[J]. International Journal of Hydrogen Energy, 2016, 41(2): 857-865. doi: 10.1016/j.ijhydene.2015.11.085
    NASRI S, SLAMA B S, YAHYAOUI I, et al. Autonomous hybrid system and coordinated intelligent management approach in power system operation and control using hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9511-9523. doi: 10.1016/j.ijhydene.2017.01.098
    MARCHENKO O V, SOLOMIN S V. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9361-9370. doi: 10.1016/j.ijhydene.2017.02.076
    李奇,杨寒卿,韩莹,等. 光伏并网发电系统参数协调优化方法研究[J]. 西南交通大学学报,2016,51(5): 894-901. doi: 10.3969/j.issn.0258-2724.2016.05.011

    LI Qi, YANG Hanqing, HAN Ying, et al. Method of parameter coordination optimization for grid-connected photovoltaic system[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 894-901. doi: 10.3969/j.issn.0258-2724.2016.05.011
    KHAN M J, IQBAL M T. Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system[J]. Renewable Energy, 2005, 30(3): 421-439. doi: 10.1016/j.renene.2004.05.013
    HAN Ying, LI Qi, WANG Tianhong, et al. Multisource coordination energy management strategy based on SOC consensus for a PEMFC-battery-supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 296-305. doi: 10.1109/TVT.2017.2747135
    MARUF-UL-KARIM M, IQBAL M T. Dynamic modeling and simulation of alkaline type electrolyzers[C]//Conference on Electrical and Computer Engineering. [S.l.]: IEEE, 2009: 711-715.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  498
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 修回日期:  2019-02-27
  • 网络出版日期:  2019-02-28
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回