• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

BFRP网格改良藏式毛石墙体受力性能试验研究

黄辉 杨丹 陈科 贾彬

黄辉, 杨丹, 陈科, 贾彬. BFRP网格改良藏式毛石墙体受力性能试验研究[J]. 西南交通大学学报, 2020, 55(3): 643-649. doi: 10.3969/j.issn.0258-2724.20180455
引用本文: 黄辉, 杨丹, 陈科, 贾彬. BFRP网格改良藏式毛石墙体受力性能试验研究[J]. 西南交通大学学报, 2020, 55(3): 643-649. doi: 10.3969/j.issn.0258-2724.20180455
HUANG Hui, YANG Dan, CHEN Ke, JIA Bin. Experiments on Mechanical Performance of Tibetan Rubble Stone Walls Retrofitted with BFRP Grids[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 643-649. doi: 10.3969/j.issn.0258-2724.20180455
Citation: HUANG Hui, YANG Dan, CHEN Ke, JIA Bin. Experiments on Mechanical Performance of Tibetan Rubble Stone Walls Retrofitted with BFRP Grids[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 643-649. doi: 10.3969/j.issn.0258-2724.20180455

BFRP网格改良藏式毛石墙体受力性能试验研究

doi: 10.3969/j.issn.0258-2724.20180455
基金项目: 国家自然科学基金(51908476,51568058);四川省科技计划资助(2018SZ0355)
详细信息
    作者简介:

    黄辉(1987—),男,讲师,博士,研究方向为石砌体加固/改良技术,E-mail:huang871005@126.com

    通讯作者:

    贾彬(1979—),男,教授,博士,研究方向为FRP在土木工程中的应用,E-mail:jiabin@126.com

  • 中图分类号: TU363

Experiments on Mechanical Performance of Tibetan Rubble Stone Walls Retrofitted with BFRP Grids

  • 摘要: 为研究玄武岩纤维复材 (basalt fiber reinforced polymer,BFRP) 网格改良藏式毛石墙体(简称毛石墙体)的受力性能,分别进行了4片毛石墙体的受压试验及低周水平往复加载试验. 重点研究竖向及水平往复荷载作用下BFRP网格改良毛石墙体的受力行为、破坏形态、承载能力、耗能性能、刚度退化规律等. 试验结果表明:竖向荷载下BFRP网格改良毛石墙体墙身裂缝发展较未改良毛石墙体缓慢,其平均极限抗压承载力是未改良毛石墙体的2.72倍,改良毛石墙体的最终破坏形态为BFRP网格受拉断裂后墙体面外失稳破坏;低周水平往复荷载作用下BFRP网格改良毛石墙体的耗能性能和抗剪承载力较未改良毛石墙体有显著提高,其平均峰值抗剪承载力提高幅度达74.3%;BFRP网格改良毛石墙体的最终破坏形态为斜向贯通裂缝处BFRP网格受拉断裂后墙体的剪切破坏.

     

  • 图 1  试件详图

    Figure 1.  Details of specimen

    图 2  低周往复加载试验装置示意

    Figure 2.  Schematic diagram of devices for specimens tested under low cyclic loading

    图 3  毛石墙体受压破坏形态

    Figure 3.  Failure mode of specimens tested under compressive load

    图 4  受压试件荷载-竖向位移曲线

    Figure 4.  Load-vertical displacement curves of specimens under compressive load

    图 5  低周往复荷载下毛石墙体典型破坏形态

    Figure 5.  Typical failure mode of specimens under low cyclic loading

    图 6  低周往复荷载下试件的滞回曲线

    Figure 6.  Hysteresis curves of specimens under low cyclic loading

    图 7  低周往复荷载下试件的骨架曲线

    Figure 7.  Skeleton curves of the specimens under low cyclic loading

    图 8  低周往复荷载下毛石墙体刚度退化曲线

    Figure 8.  Stiffness degradation curves of rubble stone walls tested under low cyclic loading

    图 9  低周往复荷载下毛石墙体耗能曲线

    Figure 9.  Energy dissipation curves of rubble stone walls tested under low cyclic loading

    表  1  试件编号及特征

    Table  1.   Numbering and features of tested specimens

    试件编号是否布置BFRP网格荷载形式
    W-11 竖向受压
    W-12
    W-31
    W-32
    W-21 低周水平往复荷载
    W-22
    W-41
    W-42
    下载: 导出CSV

    表  2  试件各特征点对应的荷载及位移

    Table  2.   Load and displacement of each critical point

    墙体Fcr/kNΔcr/mmFy/kNΔy/mmFmax/kNΔmax/mmFu/kNΔu/mm
    W-21 6.9 2.6 8.0 6.8 11.5 12.8 8.9 21.4
    W-22 5.6 1.7 8.4 5.4 11.1 10.6 8.6 19.3
    平均值 6.2 2.1 8.2 6.1 11.3 11.7 8.7 20.4
    W-41 12.0 2.4 17.3 10.7 20.1 30.3 17.1 31.7
    W-42 12.1 2.9 16.1 8.7 19.2 31.3 16.3 33.1
    平均值 12.1 2.7 16.7 9.7 19.7 30.8 16.7 32.4
    下载: 导出CSV

    表  3  试件各特征点层间位移角和位移延性系数

    Table  3.   Interlaminar displacement angle and displacement ductility coefficient of each critical point

    墙体Δcr/HΔy/HΔmax/HΔu/Hμ
    W-21 1/574 1/220 1/117 1/138 1.60
    W-22 1/866 1/276 1/140 1/165 1.67
    W-41 1/614 1/139 1/49 1/58 2.39
    W-42 1/505 1/171 1/48 1/56 3.04
    下载: 导出CSV
  • 杜启明. 西藏传统建筑——高原上的创造力[J]. 中国文化遗产,2009(6): 12-25.

    DU Qiming. Traditional constructions in Tibet—creativity on the plateau[J]. China Cultural Heritage, 2009(6): 12-25.
    邹紫男. 川西传统石构民居的结构体系研究[D]. 西安: 西安建筑科技大学, 2013.
    邹洪灿. 藏族传统建筑的防震意识与措施[J]. 古建园林技术,1993(2): 38-42.

    ZOU Hongcan. Earthquake awareness and measures of traditional Tibetan architecture[J]. Traditional Chinese Architecture and Gardens, 1993(2): 38-42.
    VASCONCELOS G, LOURENCO P B. Evaluation of the in-plane seismic performance of stone masonry walls[C]// Fifth International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures. Warsaw: AMCM, 2005: 1-8.
    VASCONCELOS G, LOURENCO P B. In-plane experimental behavior of stone masonry walls under cyclic loading[J]. Journal of Structural Engineering, 2009, 135(10): 1269-1277. doi: 10.1061/(ASCE)ST.1943-541X.0000053
    王毅红,韩岗,卜永红,等. 村镇既有砌体结构民居建筑抗震性能现状分析[J]. 建筑结构,2010,40(12): 101-104,121.

    WANG Yihong, HAN Gang, BU Yonghong, et al. Existing research on seismic behavior of masonry structure in village buildings[J]. Building Structure, 2010, 40(12): 101-104,121.
    王全凤,柴振岭,黄奕辉,等. GFRP复合材料加固带壁柱砖墙抗震性能试验研究[J]. 土木工程学报,2006,39(8): 65-71,112. doi: 10.3321/j.issn:1000-131X.2006.08.011

    WANG Quanfeng, CHAI Zhenling, HUANG Yihui, et al. An experimental study on the seismic performance of brick masonry walls with pilaster reinforced by GFRP[J]. China Civil Engineering Journal, 2006, 39(8): 65-71,112. doi: 10.3321/j.issn:1000-131X.2006.08.011
    樊越,左宏亮,郭亮. 粘贴CFRP砖砌体墙在低周反复荷载作用下的试验[J]. 沈阳建筑大学学报(自然科学版),2012,28(2): 208-214.

    FAN Yue, ZUO Hongliang, GUO Liang. Experimental study on the test of masonry walls strengthened with CFRP under low-cyclic loads[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2012, 28(2): 208-214.
    SANTA-MARIA H, ALCAINO P. Repair of in-plane shear damaged masonry walls with external FRP[J]. Construction and Building Materials, 2011, 25(3): 1172-1180. doi: 10.1016/j.conbuildmat.2010.09.030
    ELGAWADY M A, LESTUZZI P, BADOUX M. Aseismic retrofitting of unreinforced masonry walls using FRP[J]. Composites Part B:Engineering, 2006, 37(2/3): 148-162.
    雷真,张力,段自侠,等. BFRP复合材料加固老旧砌体砖墙的平面内受力性能[J]. 材料科学,2017,7(6): 592-602. doi: 10.12677/MS.2017.76078

    LEI Zhen, ZHANG Li, DUAN Zixia, et al. In-plane mechanical behavior of ancient masonry walls strengthened by BFRP composite material[J]. Material Sciences, 2017, 7(6): 592-602. doi: 10.12677/MS.2017.76078
    PAPANICOLAOU C, TRIANTAFILLOU T, LEKKA M. Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels[J]. Construction and Building Materials, 2011, 25(2): 504-514. doi: 10.1016/j.conbuildmat.2010.07.018
    木雅• 曲吉建才. 西藏民居[M]. 北京: 中国建筑工业出版社, 2010: 90-110.
    傅雷,贾彬. 西藏民居毛石墙体抗压性能试验研究[J]. 工程抗震与加固改造,2015,37(5): 119-122,163.

    FU Lei, JIA Bin. Experimental study on compressive performance of the rubble masonry walls of Tibet folk dwelling[J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37(5): 119-122,163.
    何保康,郭鹏,王彦敏,等. 高强冷弯型钢骨架墙体抗剪性能试验研究[J]. 建筑结构学报,2008,29(2): 72-78,113. doi: 10.3321/j.issn:1000-6869.2008.02.011

    HE Baokang, GUO Peng, WANG Yanmin, et al. Experimental study on shear resistance of high strength cold-formed steel framing walls[J]. Journal of Building Structures, 2008, 29(2): 72-78,113. doi: 10.3321/j.issn:1000-6869.2008.02.011
    黄炜,张敏,江永涛,等. 装配式混凝土墙抗震性能试验研究[J]. 建筑结构学报,2015,36(10): 88-95.

    HUANG Wei, ZHANG Min, JIANG Yongtao, et al. Experimental study on seismic behavior of precast concrete walls[J]. Journal of Building Structures, 2015, 36(10): 88-95.
    康佳华,熊海贝,吕西林. 轻型木结构房屋足尺模型低周反复加载试验研究[J]. 土木工程学报,2010,43(11): 71-78.

    KANG Jiahua, XIONG Haibei, LÜ Xilin. Cyclic tests of full-scale wood-framed constructions[J]. China Civil Engineering Journal, 2010, 43(11): 71-78.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  302
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-08-04
  • 网络出版日期:  2020-04-20
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回