• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高恢复性钢筋混凝土圆柱的抗震试验研究

刘志华 赵华 孙玉平 赵世春 赵军

刘志华, 赵华, 孙玉平, 赵世春, 赵军. 高恢复性钢筋混凝土圆柱的抗震试验研究[J]. 西南交通大学学报, 2020, 55(1): 184-192. doi: 10.3969/j.issn.0258-2724.20180451
引用本文: 刘志华, 赵华, 孙玉平, 赵世春, 赵军. 高恢复性钢筋混凝土圆柱的抗震试验研究[J]. 西南交通大学学报, 2020, 55(1): 184-192. doi: 10.3969/j.issn.0258-2724.20180451
LIU Zhihua, ZHAO Hua, SUN Yuping, ZHAO Shichun, ZHAO Jun. Experimental Study on Seismic Behavior of Resilient Circular Concrete Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 184-192. doi: 10.3969/j.issn.0258-2724.20180451
Citation: LIU Zhihua, ZHAO Hua, SUN Yuping, ZHAO Shichun, ZHAO Jun. Experimental Study on Seismic Behavior of Resilient Circular Concrete Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 184-192. doi: 10.3969/j.issn.0258-2724.20180451

高恢复性钢筋混凝土圆柱的抗震试验研究

doi: 10.3969/j.issn.0258-2724.20180451
基金项目: 国家重点研发计划资助项目(2016YFE 0125600);创新研究群体科学基金资助项目(41521002)
详细信息
    作者简介:

    刘志华(1987—),男,博士研究生,研究方向为结构工程,E-mail:lzh0931@163.com

    通讯作者:

    赵华(1976—),女,副教授,研究方向为结构工程,E-mail:zhaohua@cdut.edu.cn

  • 中图分类号: TU375.3

Experimental Study on Seismic Behavior of Resilient Circular Concrete Columns

  • 摘要: 为了使钢筋混凝土圆柱在遭遇超过现行规范设定水准的巨大地震时仍能保持正刚性且残余变形足够小,提出了采用高强低粘结的无预应力钢绞线作为柱纵筋的办法. 为了验证这种方法的有效性,进行了4根钢筋混凝土圆柱的常轴压低周水平往复试验,其中3根采用钢绞线纵筋,1根采用普通钢筋作纵筋,研究了剪跨比和塑性铰区横向约束方式对钢绞线混凝土柱抗震性能的影响. 试验结果表明:剪跨比为3和4的配置钢绞线为纵筋的钢筋混凝土圆柱位移角达6%时,仍保持正刚性,且残余位移角在2%以内;和普通钢筋混凝土圆柱相比,当位移角为6%时,钢绞线混凝土圆柱的侧向承载力提高了90%,残余变形降低了73%;在柱的塑性铰区(1.5DD为截面直径)采用螺栓连接的钢板进行横向约束可将柱的侧向承载力进一步提高15%,残余变形进一步降低21%;由于钢绞线存在明显的粘结-滑移效应,基于平截面假定的分析方法不适用于采用钢绞线的钢筋混凝土柱侧向承载力的评估.

     

  • 图 1  试件的尺寸与配筋

    Figure 1.  Reinforcement details and dimensions of specimens

    图 2  加载制度

    Figure 2.  Loading program

    图 3  加载装置

    Figure 3.  Loading apparatus

    图 4  破坏过程和裂缝开展形态

    Figure 4.  Failure development and crack development patterns

    图 5  水平力-水平位移角关系

    Figure 5.  Lateral force versus drift ratio relationships

    图 6  纵筋应变-水平位移角关系

    Figure 6.  Longitudinal steel strain versus drift ratio relationships

    图 7  骨架曲线

    Figure 7.  Skeleton curves

    图 8  刚度退化曲线

    Figure 8.  Stiffness degradation curves

    表  1  试件参数

    Table  1.   Specimen parameters

    参数试件编号
    NS3 HS3 HS4 HS4SP2
    剪跨比 3 3 4 4
    fcm/MPa 35.3 35.3 24.2 24.2
    轴压比 n 0.15 0.15 0.15 0.15
    轴力/kN 299 299 203 203
    纵筋型号 12ϕ12 10ϕs15.2 10ϕs15.2 10ϕs15.2
    配筋率 ρ1 1.92% 1.98% 1.98% 1.98%
    约束方式 ϕ6@30
    箍筋
    ϕ6@30
    箍筋
    ϕ6@30
    箍筋
    1.5D
    2 mm 钢板
    ρ2 1.47% 1.47% 1.47% 2.51%
     注:立方体和棱柱体的强度换算取为 0.8;fcm 为实测混   凝土立方体平均强度;ρ2 为体积配箍率(含钢率).
    下载: 导出CSV

    表  2  钢材的材料性能

    Table  2.   Properties of the steel materials used

    参数ϕ6 箍筋ϕ12 纵筋ϕs15.2 钢绞线SP2 钢板
    弹性模量 E
    /(× 1011 Pa)
    2.06 1.98 2.03 2.18
    屈服强度 f
    /(× 106 Pa)
    399.1 429.8 1728.6 326.2
    屈服应变 ε/% 0.21 0.22 1.05 0.16
    极限强度 fu
    /(× 106 Pa)
    574.1 540.4 1932.8 445.1
    极限应变 εu/% 13.6 15.7 7.9 21.8
     注:1. 钢绞线 ϕs15.2 的屈服强度按残余应变为 0.2%     时的应力取值; 2. SP2 表示 2 mm 的约束钢板,实    际测得钢板的平均厚度 d = 1.87 mm.
    下载: 导出CSV

    表  3  残余位移角

    Table  3.   Residual drift ratio %

    试件R/%
    1.001.502.002.503.506.00
    NS30.150.390.741.172.064.44
    HS30.160.250.300.390.551.20
    HS40.170.290.400.500.741.84
    HS4SP20.210.350.410.510.711.46
    下载: 导出CSV

    表  4  等效粘滞阻尼系数

    Table  4.   Equivalent viscous damping ratio

    试件R/%
    1.002.003.004.005.006.00
    NS30.090.170.220.250.280.30
    HS30.090.090.080.090.090.09
    HS40.110.100.100.100.110.12
    HS4SP20.110.110.100.100.100.10
    下载: 导出CSV
  • FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake I:residual inclination of reinforced concrete piers[J]. Journal of Bridge Engineering, 2005, 10(1): 45-53. doi: 10.1061/(ASCE)1084-0702(2005)10:1(45)
    PRIESTLEY M J N, TAO J R. Seismic response of precast prestressed concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38(1): 58-69. doi: 10.15554/pcij.01011993.58.69
    吕西林,陈云,毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版),2011,39(7): 941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001

    LÜ Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001
    SARTI F, PALERMO A, PAMPANIN S. Quasi- static cyclic testing of two-thirds scale un-bonded posttensioned rocking dissipative timber walls[J]. Journal of Structural Engineering, 2016, 142(4): 1-28.
    GUERRINI G, RESTREPO J I, SCHOETTLER M J. Self-centering, low-damage, precast post-tensioned columns for accelerated bridge construction in seismic regions[C]// 16th World Conference on Earthquake Engineering. Santiago: [s.n.], 2017: 3921.
    SUN Y P, TAKEUCHI T, FUNATO Y. Earthquake-resisting properties and evaluation of high performance concrete columns with low residual deformation[C]// 15th World Conference on Earthquake Engineering. Lisboa: [s.n.], 2012: 282
    SATYARNO I. Concrete columns incorporating mixed ultra high and normal strength longitudinal reinforcement[D]. Christchurch: Univ. of Canterbury, 1993.
    SUN Y, FUKUHARA T. Development of high seismic performance concrete frames[C]// International Symposium on the Utilization of High Strength/High-Performance Concrete. Washington D. C.: ACI Special Publication, 2005: 615-632.
    叶列平,ASAD U Q,马千里,等. 高强钢筋对框架结构抗震破坏机制和性能控制的研究[J]. 工程抗震与加固改造,2006,28(1): 18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005

    YE Lieping, ASAD U Q, MA Qianli, et al. Study on failure mechanism and seismic performance of passive control RC frame against earthquake[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005
    张鑫,韦合,叶列平. 高强钢筋配筋混凝土框架结构抗震性的试验研究[J]. 土木工程学报,2009,42(5): 74-78.

    ZHANG Xin, WEI He, YE Lieping. Experimental study on seismic performance of RC frames reinforced with high-strength steel[J]. China Civil Engineering Journal, 2009, 42(5): 74-78.
    OUSALEM H, TAKATSU H, ISHIKAWA Y, et al. Use of high-strength bars for the seismic performance of high-strength concrete columns[J]. Journal of Advanced Concrete Technology, 2009, 7(1): 123-134. doi: 10.3151/jact.7.123
    SHIM C, CHUNG C H, KIM H H. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section[J]. Engineering Structures, 2008, 30(12): 3782-3792. doi: 10.1016/j.engstruct.2008.07.005
    SHIM C, LEE S, PARK S, et al. Experiments on prefabricated segmental bridge piers with continuous longitudinal reinforcing bars[J]. Engineering Structures, 2017, 132: 671-683. doi: 10.1016/j.engstruct.2016.11.070
    CAI Z K, WANG Z, YANG T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal- and high-strength steel rebars[J]. Construction & Building Materials, 2018, 166: 945-955.
    孙玉平,赵世春,赵华. 节能型高恢复性钢筋混凝土柱的抗震性能与评估方法[J]. 土木工程学报,2013,46(5): 105-110.

    SUN Yuping, ZHAO Shichun, ZHAO Hua. Seimic behavior and evaluation of sustainable and resilient concrete columns[J]. China Civil Engineering Journal, 2013, 46(5): 105-110.
    CAI Gaochuang. Seismic performance and evaluation of resilient circular concrete columns[D]. Kobe: Kobe University, 2014
    MA W, TAKEUCHI T, FUJINAGA T, et al. Axial behavior of concrete confined by the steel plates connected with bolts[C]//Summaries of Technical Papers of Annual Meeting. Osaka: Architectural Institute of Japan, 2014: 275-276.
    KOWALSKY M J, PRIESTLEY MJN. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions[J]. ACI Structural Journal, 2000, 97(3): 388-396.
    SUN Y, SAKINO K. Earthquake-resisting performance of RC columns confined by square steel tubes: Part1 Columns under high axial load[J]. Journal of Structural & Construction Engineering, 1997, 501(62): 93-101.
    KAWASHIMA K, MACRAE G A, HOSHIKUMA J I, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  195
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-31
  • 修回日期:  2018-09-02
  • 网络出版日期:  2018-12-21
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回