Experimental Study on Seismic Behavior of Resilient Circular Concrete Columns
-
摘要: 为了使钢筋混凝土圆柱在遭遇超过现行规范设定水准的巨大地震时仍能保持正刚性且残余变形足够小,提出了采用高强低粘结的无预应力钢绞线作为柱纵筋的办法. 为了验证这种方法的有效性,进行了4根钢筋混凝土圆柱的常轴压低周水平往复试验,其中3根采用钢绞线纵筋,1根采用普通钢筋作纵筋,研究了剪跨比和塑性铰区横向约束方式对钢绞线混凝土柱抗震性能的影响. 试验结果表明:剪跨比为3和4的配置钢绞线为纵筋的钢筋混凝土圆柱位移角达6%时,仍保持正刚性,且残余位移角在2%以内;和普通钢筋混凝土圆柱相比,当位移角为6%时,钢绞线混凝土圆柱的侧向承载力提高了90%,残余变形降低了73%;在柱的塑性铰区(1.5D,D为截面直径)采用螺栓连接的钢板进行横向约束可将柱的侧向承载力进一步提高15%,残余变形进一步降低21%;由于钢绞线存在明显的粘结-滑移效应,基于平截面假定的分析方法不适用于采用钢绞线的钢筋混凝土柱侧向承载力的评估.Abstract: In order to maintain the positive stiffness and small residual deformation of reinforced concrete columns when they are subjected to tremendous earthquakes that exceed the standard set by current codes, a method of using high-strength and low-bond non-prestressed steel strands as longitudinal reinforcement bars of columns is proposed. In order to verify the effectiveness of this method, horizontal low-frequency cyclic loading tests were performed on four circular reinforced concrete columns under a constant axial load, of which three were reinforced with the above-mentioned longitudinal steel strands (hereinafter referred to as ‘new type columns’) and one with normal-strength (NS) rebars. The effects of shear-span ratios and transverse confinement modes within the potential plastic hinge region on the seismic behavior of the new type columns were studied. The test results show that when the drift ratio of the new type columns with a shear-span ratio of 3 to 4 reaches 6%, it still maintains positive stiffness and the residual drift ratio is less than 2%. Compared with the concrete column reinforced with NS rebars, the lateral bearing capacity of the new type column was increased by 90% and the residual deformation was reduced by 73% at the drift ratio of 6%. Besides, the lateral bearing capacity of the new column can be further increased by 15% and the residual deformation can be further reduced by 21% by adding transverse confinement with bolted steel plates in the plastic hinge zone of the column (1.5D). Comparisons between the experimental and analytical results indicate that the flexural analysis based on Navier’s hypothesis is not suitable for prediction of the lateral bearing capacity of the concrete columns reinforced with steel strands due to the the obvious bond-slip effect of steel strands.
-
Key words:
- circular concrete column /
- positive stiffness /
- residual deformation /
- steel strands /
- bond-slip effect
-
表 1 试件参数
Table 1. Specimen parameters
参数 试件编号 NS3 HS3 HS4 HS4SP2 剪跨比 3 3 4 4 fcm/MPa 35.3 35.3 24.2 24.2 轴压比 n 0.15 0.15 0.15 0.15 轴力/kN 299 299 203 203 纵筋型号 12ϕ12 10ϕs15.2 10ϕs15.2 10ϕs15.2 配筋率 ρ1 1.92% 1.98% 1.98% 1.98% 约束方式 ϕ6@30
箍筋ϕ6@30
箍筋ϕ6@30
箍筋1.5D内
2 mm 钢板ρ2 1.47% 1.47% 1.47% 2.51% 注:立方体和棱柱体的强度换算取为 0.8;fcm 为实测混 凝土立方体平均强度;ρ2 为体积配箍率(含钢率). 表 2 钢材的材料性能
Table 2. Properties of the steel materials used
参数 ϕ6 箍筋 ϕ12 纵筋 ϕs15.2 钢绞线 SP2 钢板 弹性模量 E
/(× 1011 Pa)2.06 1.98 2.03 2.18 屈服强度 f
/(× 106 Pa)399.1 429.8 1728.6 326.2 屈服应变 ε/% 0.21 0.22 1.05 0.16 极限强度 fu
/(× 106 Pa)574.1 540.4 1932.8 445.1 极限应变 εu/% 13.6 15.7 7.9 21.8 注:1. 钢绞线 ϕs15.2 的屈服强度按残余应变为 0.2% 时的应力取值; 2. SP2 表示 2 mm 的约束钢板,实 际测得钢板的平均厚度 d = 1.87 mm. 表 3 残余位移角
Table 3. Residual drift ratio
% 试件 R/% 1.00 1.50 2.00 2.50 3.50 6.00 NS3 0.15 0.39 0.74 1.17 2.06 4.44 HS3 0.16 0.25 0.30 0.39 0.55 1.20 HS4 0.17 0.29 0.40 0.50 0.74 1.84 HS4SP2 0.21 0.35 0.41 0.51 0.71 1.46 表 4 等效粘滞阻尼系数
Table 4. Equivalent viscous damping ratio
试件 R/% 1.00 2.00 3.00 4.00 5.00 6.00 NS3 0.09 0.17 0.22 0.25 0.28 0.30 HS3 0.09 0.09 0.08 0.09 0.09 0.09 HS4 0.11 0.10 0.10 0.10 0.11 0.12 HS4SP2 0.11 0.11 0.10 0.10 0.10 0.10 -
FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake I:residual inclination of reinforced concrete piers[J]. Journal of Bridge Engineering, 2005, 10(1): 45-53. doi: 10.1061/(ASCE)1084-0702(2005)10:1(45) PRIESTLEY M J N, TAO J R. Seismic response of precast prestressed concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38(1): 58-69. doi: 10.15554/pcij.01011993.58.69 吕西林,陈云,毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版),2011,39(7): 941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001LÜ Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948. doi: 10.3969/j.issn.0253-374x.2011.07.001 SARTI F, PALERMO A, PAMPANIN S. Quasi- static cyclic testing of two-thirds scale un-bonded posttensioned rocking dissipative timber walls[J]. Journal of Structural Engineering, 2016, 142(4): 1-28. GUERRINI G, RESTREPO J I, SCHOETTLER M J. Self-centering, low-damage, precast post-tensioned columns for accelerated bridge construction in seismic regions[C]// 16th World Conference on Earthquake Engineering. Santiago: [s.n.], 2017: 3921. SUN Y P, TAKEUCHI T, FUNATO Y. Earthquake-resisting properties and evaluation of high performance concrete columns with low residual deformation[C]// 15th World Conference on Earthquake Engineering. Lisboa: [s.n.], 2012: 282 SATYARNO I. Concrete columns incorporating mixed ultra high and normal strength longitudinal reinforcement[D]. Christchurch: Univ. of Canterbury, 1993. SUN Y, FUKUHARA T. Development of high seismic performance concrete frames[C]// International Symposium on the Utilization of High Strength/High-Performance Concrete. Washington D. C.: ACI Special Publication, 2005: 615-632. 叶列平,ASAD U Q,马千里,等. 高强钢筋对框架结构抗震破坏机制和性能控制的研究[J]. 工程抗震与加固改造,2006,28(1): 18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005YE Lieping, ASAD U Q, MA Qianli, et al. Study on failure mechanism and seismic performance of passive control RC frame against earthquake[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(1): 18-24. doi: 10.3969/j.issn.1002-8412.2006.01.005 张鑫,韦合,叶列平. 高强钢筋配筋混凝土框架结构抗震性的试验研究[J]. 土木工程学报,2009,42(5): 74-78.ZHANG Xin, WEI He, YE Lieping. Experimental study on seismic performance of RC frames reinforced with high-strength steel[J]. China Civil Engineering Journal, 2009, 42(5): 74-78. OUSALEM H, TAKATSU H, ISHIKAWA Y, et al. Use of high-strength bars for the seismic performance of high-strength concrete columns[J]. Journal of Advanced Concrete Technology, 2009, 7(1): 123-134. doi: 10.3151/jact.7.123 SHIM C, CHUNG C H, KIM H H. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section[J]. Engineering Structures, 2008, 30(12): 3782-3792. doi: 10.1016/j.engstruct.2008.07.005 SHIM C, LEE S, PARK S, et al. Experiments on prefabricated segmental bridge piers with continuous longitudinal reinforcing bars[J]. Engineering Structures, 2017, 132: 671-683. doi: 10.1016/j.engstruct.2016.11.070 CAI Z K, WANG Z, YANG T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal- and high-strength steel rebars[J]. Construction & Building Materials, 2018, 166: 945-955. 孙玉平,赵世春,赵华. 节能型高恢复性钢筋混凝土柱的抗震性能与评估方法[J]. 土木工程学报,2013,46(5): 105-110.SUN Yuping, ZHAO Shichun, ZHAO Hua. Seimic behavior and evaluation of sustainable and resilient concrete columns[J]. China Civil Engineering Journal, 2013, 46(5): 105-110. CAI Gaochuang. Seismic performance and evaluation of resilient circular concrete columns[D]. Kobe: Kobe University, 2014 MA W, TAKEUCHI T, FUJINAGA T, et al. Axial behavior of concrete confined by the steel plates connected with bolts[C]//Summaries of Technical Papers of Annual Meeting. Osaka: Architectural Institute of Japan, 2014: 275-276. KOWALSKY M J, PRIESTLEY MJN. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions[J]. ACI Structural Journal, 2000, 97(3): 388-396. SUN Y, SAKINO K. Earthquake-resisting performance of RC columns confined by square steel tubes: Part1 Columns under high axial load[J]. Journal of Structural & Construction Engineering, 1997, 501(62): 93-101. KAWASHIMA K, MACRAE G A, HOSHIKUMA J I, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5): 523-530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)