• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

地铁先锋扣件地段钢轨波磨成因

吴波文 陈光雄 赵晓男 朱琪 康熙

吴波文, 陈光雄, 赵晓男, 朱琪, 康熙. 地铁先锋扣件地段钢轨波磨成因[J]. 西南交通大学学报, 2020, 55(3): 650-657. doi: 10.3969/j.issn.0258-2724.20180371
引用本文: 吴波文, 陈光雄, 赵晓男, 朱琪, 康熙. 地铁先锋扣件地段钢轨波磨成因[J]. 西南交通大学学报, 2020, 55(3): 650-657. doi: 10.3969/j.issn.0258-2724.20180371
WU Bowen, CHEN Guangxiong, ZHAO Xiaonan, ZHU Qi, KANG Xi. Formation Mechanisim of Rail Corrugation Occurring on Tight Curved Track with Vanguard Fasteners[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 650-657. doi: 10.3969/j.issn.0258-2724.20180371
Citation: WU Bowen, CHEN Guangxiong, ZHAO Xiaonan, ZHU Qi, KANG Xi. Formation Mechanisim of Rail Corrugation Occurring on Tight Curved Track with Vanguard Fasteners[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 650-657. doi: 10.3969/j.issn.0258-2724.20180371

地铁先锋扣件地段钢轨波磨成因

doi: 10.3969/j.issn.0258-2724.20180371
基金项目: 国家自然科学基金(51775461)
详细信息
    作者简介:

    吴波文(1990—),男,博士研究生,研究方向为轮轨异常磨耗,E-mail:240757639@qq.com

    通讯作者:

    陈光雄(1963—),男,教授,研究方向为轮轨异常磨耗,E-mail:chen_guangx@163.com

  • 中图分类号: U211

Formation Mechanisim of Rail Corrugation Occurring on Tight Curved Track with Vanguard Fasteners

  • 摘要: 为了研究先锋扣件地段钢轨波磨的成因并给出应对措施,基于摩擦自激振动引起钢轨波磨的理论,建立了包括导向轮对、轨道系统的自激振动有限元模型,使用复特征值法研究了轮对-轨道系统的动态稳定性;通过参数敏感性分析寻找影响钢轨波磨的主导因素,提出抑制乃至消除钢轨波磨的措施. 研究结果表明:轮轨间饱和的蠕滑力引起的轮对-轨道系统频率为319 Hz的自激振动是导致内侧钢轨严重的波磨的主要原因,模型预测的波磨波长为51.4 mm,与实测数据非常接近;参数敏感性分析表明,先锋扣件中的橡胶支承块的弹性模量和阻尼系数越大,钢轨波磨发生的可能性越低;采用弹性模量和阻尼系数有利于抑制乃至消除钢轨波磨,将阻尼系数提高到0.000 1可显著抑制钢轨波磨.

     

  • 图 1  导向轮对-钢轨系统接触模型

    Figure 1.  Contact model of the leading wheelset-track system

    图 2  轮轨系统有限元模型

    Figure 2.  The finite element model of the wheelset-track system

    图 3  车辆轨道系统多体动力学模型

    Figure 3.  Multi-body dynamic model of the vehicle-track system.

    图 4  前转向架轮轨间的饱和蠕滑力

    Figure 4.  The saturated creep force between the wheels and rails of the front bogie

    图 5  轮对-轨道系统的不稳定振动频率分布

    Figure 5.  The unstable vibration frequecies distribution of the wheelset-track system on a tighted curved track

    图 6  轨道轮轨系统的不稳定振动振型

    Figure 6.  Mode shape of unstable vibration of the wheelset-track system on a tighted curved track

    图 7  橡胶支承块弹性模量对轮-轨系统不稳定振动的影响

    Figure 7.  Effect of the modulus of elasticity of the rubber rest pad on the unstable vibration of the wheelset-track system

    图 8  橡胶支承块阻尼系数对轮-轨系统不稳定振动的影响

    Figure 8.  Effect of the damping coefficient of the rubber rest pad on the unstable vibration of the wheelset-track system

    表  1  轮轨系统的材料物理参数

    Table  1.   Material parameters of the wheelset-track system.

    部件名称密度 ρ/
    (kg•m−3
    弹性模量
    E / MPa
    泊松比
    阻尼
    系数 ε
    轮对 7 800 210 000 0.30
    钢轨 7 800 210 000 0.30
    轨道板 2 400 32 400 0.24
    侧板 7 800 200 000 0.30
    橡胶
    支承块
    900 20 0.40 1 × 10−5
    下载: 导出CSV
  • 李伟,杜星,王衡禹,等. 地铁钢轨一种波磨机理的调查分析[J]. 机械工程学报,2013,49(16): 26-32. doi: 10.3901/JME.2013.16.026

    LI Wei, DU Xing, WANG Hengyu, et al. Investigation into the mechanism of type of rail corrugation of metro[J]. Journal of Mechanical Engineering, 2013, 49(16): 26-32. doi: 10.3901/JME.2013.16.026
    仲莹涵,关庆华,温泽峰,等. 地铁钢轨波磨对轨道结构振动及减振特性影响[J]. 噪声与振动控制,2017,37(4): 85-89. doi: 10.3969/j.issn.1006-1355.2017.04.017

    ZHONG Yinghan, GUAN Qinghua, WEN Zefeng, et al. Influence of metro rail corrugation on track system ’s vibration and mitigation characteristics[J]. Noise and Vibration Control, 2017, 37(4): 85-89. doi: 10.3969/j.issn.1006-1355.2017.04.017
    CUI X L, CHEN G X, YANG H G, et al. Study on rail corrugation of a metro tangential track with cologne-egg type fasteners[J]. Vehicle System Dynamics, 2016, 54(3): 353-369. doi: 10.1080/00423114.2015.1137955
    ZHAO C, WANG P, SHENG X, et al. Theoretical simulation and experimental investigation of a rail damper to minimize short-pitch rail corrugation[J]. Mathematical Problems in Engineering, 2017, 4: 2359404.1-2359404.14.
    崔晓璐,钱韦吉,张青,等. 直线线路科隆蛋扣件地段钢轨波磨成因的理论研究[J]. 振动与冲击,2016,35(13): 114-118,152.

    CUI Xiaolu, QIAN Weiji, ZHANG Qing, et al. Forming mechanism of rail corrugation of a straight track section supported by Cologne-egg fasteners[J]. Journal of Vibration and Shock, 2016, 35(13): 114-118,152.
    GRASSIE S L, KALOUSEK J. Rail corrugation:characteristics,causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    JIN X, WEN Z, WANG K, et al. Effect of passenger car curving on rail corrugation at a curved track[J]. Wear, 2006, 260(6): 619-633. doi: 10.1016/j.wear.2005.03.016
    BAEZA L, VILA P, XIE G, et al. Prediction of rail corrugation using a rotating flexible wheelset coupled with a flexible track model and a non-hertzian/non-steady contact model[J]. Journal of Sound and Vibration, 2011, 330(18/19): 4493-4507. doi: 10.1016/j.jsv.2011.03.032
    CIAVARELLA M, BARBER J. Influence of longitudinal creepage and wheel inertia on short-pitch corrugation:a resonance-free mechanism to explain the roaring rail phenomenon[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2008, 222(3): 171-181. doi: 10.1243/13506501JET373
    WU T X, THOMPSON D J. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions[J]. Wear, 2005, 258(7/8): 1115-1125.
    SUN Y Q, SIMSON S. Wagon-track modelling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track[J]. Wear, 2008, 265(9/10): 1193-1201.
    CHEN G X, ZHOU Z R, OUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    CUI X, CHEN G, ZHAO J, et al. Field investigation and numerical study of the rail corrugation caused by frictional self-excited vibration[J]. Wear, 2017, 376/377: 1919-1929. doi: 10.1016/j.wear.2017.01.089
    CUI X, CHEN G, YANG H, et al. A case study of rail corrugation phenomenon based on the viewpoint of friction-induced oscillation of a wheelset-track system[J]. Journal of Vibroengineering, 2017, 19(6): 4516-4530. doi: 10.21595/jve.2017.17867
    肖祥龙,陈光雄,莫继良,等. 摩擦调节剂抑制钢轨波磨的机理研究[J]. 振动与冲击,2013,32(8): 166-170. doi: 10.3969/j.issn.1000-3835.2013.08.029

    XIAO Xianglong, CHEN Guangxiong, MO Jiliang, et al. Mechanism for friction to suppress a wear-type rail corrugation[J]. Journal of Vibration and Shock, 2013, 32(8): 166-170. doi: 10.3969/j.issn.1000-3835.2013.08.029
    QIAN W J, WU Y F, CHEN G X, et al. Experimental and numerical studies of the effects of a rail vibration absorber on suppressing short pitch rail corrugation[J]. Journal of Vibroengineering, 2016, 18(2): 1133-1144.
    CUI X L, CHEN G X, YANG H G, et al. Effect of the wheel/rail contact angle and the direction of the saturated creep force on rail corrugation[J]. Wear, 2015, 330/331: 554-562. doi: 10.1016/j.wear.2014.12.046
    QIAN W J, CHEN G X, OUYANG H, et al. A transient dynamic study of the self-excited vibration of a railway wheel set-track system induced by saturated creep forces[J]. Vehicle System Dynamics, 2014, 52(9): 1115-1138. doi: 10.1080/00423114.2014.924629
    BESHBICHI O E L. Complex eigenvalue analysis (CEA) and design of experiment analysis (DOE) towards the investigation of the interaction effects of track components on rail corrugation development[D]. Milano: Politecnico di Milano, 2017
    LI W, WANG H, WEN Z, et al. An investigation into the mechanism of metro rail corrugation using experimental and theoretical methods[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2016, 230(4): 1025-1039. doi: 10.1177/0954409715596182
    BROCKLEY C A, KO P L. An investigation of rail corrugation using friction-induced vibration theory[J]. Wear, 1988, 128(1): 99-106. doi: 10.1016/0043-1648(88)90256-6
    HIBBITT D, KARLSSON B, SORENSEN P. ABA-QUS Theory Manual[M/OL]. [2019-04-08]. https://max.book118.com/html/2017/0616/115969262.shtm
    OREGUI M, LI Z, DOLLEVOET R. An investigation into the modeling of railway fastening[J]. International Journal of Mechanical Sciences, 2015, 92: 1-11. doi: 10.1016/j.ijmecsci.2014.11.019
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  276
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-07
  • 修回日期:  2018-08-01
  • 网络出版日期:  2018-09-05
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回