• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

桥梁墩柱三维绕流特性精细化研究

杨万理 吴承伟 朱权龙 王广俊

杨万理, 吴承伟, 朱权龙, 王广俊. 桥梁墩柱三维绕流特性精细化研究[J]. 西南交通大学学报, 2020, 55(1): 134-143. doi: 10.3969/j.issn.0258-2724.20180335
引用本文: 杨万理, 吴承伟, 朱权龙, 王广俊. 桥梁墩柱三维绕流特性精细化研究[J]. 西南交通大学学报, 2020, 55(1): 134-143. doi: 10.3969/j.issn.0258-2724.20180335
YANG Wanli, WU Chengwei, ZHU Quanlong, WANG Guangjun. Refined Study on 3D Flow Characteristics around Bridge Piers[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 134-143. doi: 10.3969/j.issn.0258-2724.20180335
Citation: YANG Wanli, WU Chengwei, ZHU Quanlong, WANG Guangjun. Refined Study on 3D Flow Characteristics around Bridge Piers[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 134-143. doi: 10.3969/j.issn.0258-2724.20180335

桥梁墩柱三维绕流特性精细化研究

doi: 10.3969/j.issn.0258-2724.20180335
基金项目: 国家自然科学基金(51678491,51478390);四川省应用基础重大前沿项目(2017JY0003)
详细信息
    作者简介:

    杨万理(1979—),男,副教授,博士,研究方向为跨海大桥波流力,E-mail:68360903@qq.com

  • 中图分类号: U443.8

Refined Study on 3D Flow Characteristics around Bridge Piers

  • 摘要: 为了深入研究桥梁墩柱水流力的特点及产生机理,对典型桥墩模型考虑自由液面影响时的三维绕流展开了精细化研究. 采用ANSYS FLUENT 作为数值模拟工具,研究了整个墩柱阻力和升力特点,并将墩柱模型从柱底到柱顶划分为5个分段,对比了各个分段阻力、升力特点及沿着水深的变化规律,进一步分析了自由液面、底部边界对漩涡结构的影响,阐述了流场三维特性与墩柱水流力之间的关系. 研究结果表明:墩柱水流力沿着水深是非一致分布的,墩柱分为5段(c1~c5),其中c1~c4分段阻力均值与圆柱整体受力的比值分别约为25%、30%、25%、20%,c5分段处于空气中受力贡献近似为0;另外阻力振幅、升力振幅中下部较大,而底部、中上部、液面处较小;漩涡交替脱落导致墩柱左右两侧自由液面交替起伏,自由液面对漩涡产生抑制作用,自由液面处产生多个尺度不同的漩涡,这与液面下仅有两个交替脱落的漩涡是不同的;墩柱中下部漩涡脱落比其余位置有所滞后,导致柱体不同分段处升力有明显的相位差;墩柱升力振幅与阻力均值分别为5.511 N和3.695 N,相差不大,升力引起的桥墩或桥梁的振动不可忽视.

     

  • 图 1  计算域示意(单位:m)

    Figure 1.  Sketch of the calculation domain (unit: m)

    图 2  工况3墩柱阻力和升力时程曲线

    Figure 2.  Time histories of the drag force and lift force onthe cylinder in case 3

    图 3  工况3, t =70.5 s不同水深处圆柱表面动水压强分布

    Figure 3.  Distributions of hydrodynamic pressure along the cylinder perimeter at different depths when t = 70.5 s in case 3

    图 4  工况3,t = 70.5 s,Z = 0.2 m处圆柱表面动水压强周向分布及流线分布

    Figure 4.  Distributions of hydrodynamic pressure along the perimeter and streamlines at Z = 0.2 m when t = 70.5 s in case 3

    图 5  工况3,t = 70.5 s, Z = 0.4 m处流线分布

    Figure 5.  Distributions of streamlines at Z = 0.4 m when t = 70.5 s in case 3

    图 6  工况3圆柱各分段阻力时程曲线

    Figure 6.  Time histories of FD on each cylinder section in case 3

    图 7  工况3中 t = 70.25 s时刻X方向速度与动压云图

    Figure 7.  Contours of velocity and dynamic pressure in X direction at t = 70.25 s in case 3

    图 8  各工况下不同分段阻力与总阻力的比值

    Figure 8.  Drag force ratio of each section to the whole cylinder in different cases

    图 9  工况3中各分段圆柱FL时程曲线

    Figure 9.  Time histories of FL on each section in case 3

    图 10  工况3,t = 70.25 s 时Y方向动压云图

    Figure 10.  Dynamic pressure contour in Y direction when t = 70.25 s in case 3

    图 11  各工况下不同分段升力与总升力的比值

    Figure 11.  Ratio of lift force on each section to that on the whole cylinder in different cases

    图 12  工况3各分段升力频谱分析

    Figure 12.  Spectrum analysis of lift force of each section in case 3

    图 13  工况3中 t = 70.25 s时自由液面高度

    Figure 13.  Free surface height at t = 70.25 s in case 3

    图 14  不同时刻自由液面高度及自由液面处圆柱表面动水压强的周向分布

    Figure 14.  Free surface height and dynamic pressure along cylinder perimeter at free surface at different time

    图 15  工况3,t = 70.25 s时自由液面处以及Z = 0.5 m 处涡量等值线云图

    Figure 15.  Vorticity magnitude contours at free surface and Z = 0.5 m when t = 70.25 s in case 3

    图 16  工况3一个周期内三维漩涡结构的发展与脱落过程

    Figure 16.  Development and shedding processes of three-dimensional vortexes in a cycle in case 3

    表  1  网格无关性验证

    Table  1.   Verification of mesh independence

    网格质量网格数量/个ReCD用时/h
    精细约33万44 3301.03321
    中等约18万44 3301.03015
    粗糙约10万44 3301.00613
    文献[10]未给出50 0000.977未给出
    下载: 导出CSV

    表  2  数值模拟工况以及计算结果对比

    Table  2.   Numerical simulation cases and comparisons of calculated results

    工况流速/(m•s−1ReCDCLrmsf/HzSt
    10.21423 5401.0640.6240.3550.182
    20.30233 2201.0581.4050.5040.184
    30.40344 3301.0302.0060.6730.184
    40.50655 6601.0072.9880.8400.183
    50.60066 0001.0424.9671.0000.183
    下载: 导出CSV

    表  3  各分段及圆柱整体在各工况下的阻力系数

    Table  3.   Coefficients of drag forces onsections and the whole cylinder in different cases   

    工况c1c2c3c4c5c
    11.1081.1571.1360.8480.0051.064
    21.1071.1561.1220.8370.0081.058
    31.1191.1841.0840.7300.0041.030
    41.0551.1191.0460.7940.0151.007
    51.0981.1661.0690.8110.0231.042
    下载: 导出CSV
  • 詹昊,李万平,方秦汉,等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报,2008,30(12): 129-132.

    ZHAN Hao, LI Wanping, FANG Qinhan, et al. Numerical simulation of the flow around a circular cylinder at varies reynolds number[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129-132.
    雷娟棉,谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究[J]. 北京航空航天大学学报,2017,43(2): 207-217.

    LEI Juanmian, TAN Zhaoming. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 207-217.
    AI Y, FENG D, YE H, et al. Unsteady numerical simulation of flow around 2-D circular cylinder for high Reynolds numbers[J]. Journal of Marine Science and Application, 2013, 12(2): 180-184. doi: 10.1007/s11804-013-1183-0
    蒋科,张德华,戚昱,等. 亚临界雷诺数条件下圆柱绕流特性研究[J]. 海洋工程装备与技术,2017,4(1): 37-42. doi: 10.3969/j.issn.2095-7297.2017.01.008

    JIANG Ke, ZHANG Dehua, QI Yu, et al. Study on the characteristics of flow around cylinder at subcritical Reynolds number[J]. Ocean Engineering Equipment and Technology, 2017, 4(1): 37-42. doi: 10.3969/j.issn.2095-7297.2017.01.008
    SUMNER D. Two circular cylinders in cross-flow: a review[J]. Journal of Fluids and Structures, 2010, 26(6): 849-899. doi: 10.1016/j.jfluidstructs.2010.07.001
    DONG S, KARNIADAKIS G E. DNS of flow past a stationary and oscillating cylinder at Re=10 000[J]. Journal of Fluids and Structures, 2005, 20(4): 519-531. doi: 10.1016/j.jfluidstructs.2005.02.004
    闵强利,张云海. 三维瞬态圆柱绕流数值模拟[J]. 水雷战与舰船防护,2008,16(1): 11-16, 62.

    MIN Qiangli, ZHANG Yunhai. 3D Transition cylinder flow numerical simulation[J]. Mine Warfare & Ship Self-Defence, 2008, 16(1): 11-16, 62.
    蘧鑫晨, 高洋洋, 刘 彩, 等. 不同雷诺数下三维圆柱绕流数值模拟[C]//第十八届中国海洋(岸)工程学术讨论会论文集. 舟山: 海洋出版社, 2017: 240-249
    KAWAMURA T, MAYER S, GARAPON A, et al. Large eddy simulation of a flow past a free surface piercing circular cylinder[J]. Transactions-American Society of Mechanical Engineers Journal of Fluids Engineering, 2002, 124(1): 91-101.
    岳永威,李梦阳,孙龙泉,等. 具有自由液面效应的圆柱绕流三维数值模拟[J]. 船舶,2012,23(4): 16-22. doi: 10.3969/j.issn.1001-9855.2012.04.004

    YU Yongwei, LI Mengyang, SUN Longquan, et al. Numerical simulation of flow around a three-dimensional circular cylinder piercing free surface[J]. Ship & boat, 2012, 23(4): 16-22. doi: 10.3969/j.issn.1001-9855.2012.04.004
    涂程旭,王昊利,林建忠. 圆柱绕流的流场特性及涡脱落规律研究[J]. 中国计量学院学报,2008,19(2): 98-102, 136.

    TU Chengxu, WANG Haoli, LIN Jianzhong. Experimental research on the flow characteristics and vortex shedding in the flow around a circular cylinder[J]. Journal of China Jiliang University, 2008, 19(2): 98-102, 136.
    刘晓亮,许栋,黄雄合,等. 墩柱绕流水动力特性实验和大涡模拟研究[J]. 港工技术,2017,54(6): 20-23.

    LIU Xiaoliang, XU Dong, HUANG Xionghe, et al. Large eddy simulation study and hydrodynamics experiment of flow surrounding a pier[J]. Port Engineering Technology, 2017, 54(6): 20-23.
    严建科,焦臣,龙涛,等. 单圆柱桥墩绕流流场试验究[J]. 西安建筑科技大学学报(自然科学版),2012,44(6): 779-785.

    YAN Jianke, JIAO Chen, LONG Tao, et al. Single-cylindrical pier experimental study on vertex flow field[J]. Journal of Xi’ an University of Architecture & Technology (Natural Science Edition), 2012, 44(6): 779-785.
    段中喆. ANSYS FLUENT流体分析与工程实例[M]. 电子工业出版社, 2015: 144-147.
    赵伟文,万德成. 用SST-DES和SST-URANS方法数值模拟亚临界雷诺数下三维圆柱绕流问题[J]. 水动力学研究与进展A辑,2016,31(1): 1-8.

    ZHAO Weiwen, WAN Decheng. Numerical study of 3D flow past a circular cylinder at subcritical Reynolds number using SST-DES and SST-URANS[J]. Chinese Journal of Hydrodynamics, 2016, 31(1): 1-8.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  232
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-09-18
  • 网络出版日期:  2019-01-11
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回