Nonlinear Fractal Characteristics of Air Traffic Flow
-
摘要: 为了给空中交通流建模与预测提供科学依据,建立4种时间尺度的时间序列,采用替代数据法进行了非线性检验,确定5 min尺度的时间序列作为后续研究对象;应用小波分解方法研究了时间序列的自相似性特征,通过R/S方法计算了全局和局部Hurst指数,研究了时间序列的长相关性特征;应用关联积分的二阶差分法计算了时间序列的无标度性区间;采用多重分形谱方法研究了时间序列的多重分形特征,应用Grassbeger-Procaccia (GP)算法计算了时间序列的关联维数. 研究结果表明:5 min时间尺度的时间序列具有非线性因素的概率为99.2%,其他3种时间序列的非线性尚不明确;从小波分解图可定性观察出时间序列具有较强的自相似性;全局Hurst指数为0.756 5,局部Hurst指数均大于0.5,表明时间序列具有长相关性;关联积分二阶差分法能够有效识别出无标度区间,说明时间序列具有无标度性,不同嵌入维数对应的无标度区间是不同的;多重分形谱图呈现钟型,说明具有多重分形特征;关联维数为6.89,表明至少需要7个变量才能清晰描述本时间序列对应的空中交通流.Abstract: To provide scientific evidence for traffic flow modeling and prediction, the nonlinear characteristics of air traffic flow were studied based on fractal. First, 4 time series were constructed, and their nonlinearities were tested by the surrogate data method, and the 5-minute-scale time series was determined as the subsequent research object. Then, the wavelet decomposition method was used to study the self-similarity of time series. The global and local Hurst exponents were calculated by R/S method to study the long-range correlation characteristics. Next, scale-free ranges of time series were calculated using second-order difference of correlation integral. Then, the multi-fractal characteristics of time series were studied by multi-fractal spectrum method. Finally, the correlation dimensions of time series were calculated by Grassbeger-Procaccia method. The results show that the probability of the nonlinearity of 5-min-scale time series is 99.2%, and the nonlinearities of the other 3 time series are not clear. It is qualitatively observed that the time series has strong self-similarity. The global Hurst exponent is 0.756 5, and the local Hurst exponents are all more than 0.5, which indicate that the time series has a long-range correlation. The second-order difference of the correlation integral can effectively identify scale-free ranges, which shows that the time series has scale-free property and the scale-free ranges are different corresponding to different embedding dimensions. The bell-shaped multi-fractal spectrum shows the time series has multi-fractal characteristics. The correlation dimension is 6.89, indicating that at least 7 variables are needed to clearly describe the corresponding air traffic flow.
-
Key words:
- air traffic management /
- air traffic flow /
- nonlinear /
- fractal /
- time series
-
表 1 时间序列非线性检验结果
Table 1. Nonlinear test results of time series
时间尺度/
min非线性判定
次数/次非线性
概率非线性检验
结果30 217 0.217 小概率 15 354 0.354 小概率 10 742 0.742 大概率 5 992 0.992 确定 表 2 不同嵌入维度下的无标度区间
Table 2. Non-scale range under different embedding dimensions
嵌入维数 无标度区间 嵌入维数 无标度区间 2 [1.054 4,1.305 7] 9 [1.252 4,1.763 2] 3 [1.542 7,1.725 0] 10 [1.429 0,1.680 3] 4 [1.115 8,1.521 3] 11 [1.968 8,2.123 0] 5 [1.171 7,1.577 2] 12 [1.990 3,2.144 5] 6 [1.363 3,1.614 6] 13 [1.937 4,2.104 5] 7 [1.645 7,1.846 4] 14 [1.949 8,2.191 0] 8 [1.646 7,1.847 3] 15 [1.871 8,2.054 1] -
王超,郑旭芳,王蕾. 交汇航路空中交通流的非线性特研究[J]. 西南交通大学学报,2017,52(1): 171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024WANG Chao, ZHENG Xufang, WANG Lei. Research on nonlinear characteristics of air traffic flows on converging air routes[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 171-178. doi: 10.3969/j.issn.0258-2724.2017.01.024 TANDALE M D, SENGUPTA P, MENON P K, et al. Queuing network models of the national airspace system[C]// The 26th Congress of International Council of the Aeronautical Science (ICAS). Alaska: AIAA, 2008: 1-14. 张洪海,杨磊,别翌荟,等. 终端区进场交通流广义跟驰行为与复杂相变研究[J]. 航空学报,2015,36(3): 949-961.ZHANG Honghai, YANG Lei, BIE Yihui, et al. Analysis on generalized following behavior complex phase-transaction law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 949-961. BILIMORIA K D, SRIDHAR B, CHATTERJI G B, et al. FACET: future ATM concepts evaluation tool[J]. Air Traffic Control Quarterly, 2001, 9(1): 1-20. doi: 10.2514/atcq.9.1.1 张洪海,胡勇,杨磊,等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报,2015,50(2): 368-374. doi: 10.3969/j.issn.0258-2724.2015.02.025ZHANG Honghai, HU Yong, YANG Lei, et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal airspace[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 368-374. doi: 10.3969/j.issn.0258-2724.2015.02.025 董兵. 航空交通系统的交通复杂性研究[D]. 成都: 西南交通大学, 2016. 许炎,张洪海,杨磊,等. 基于实测数据的终端区空中交通流特性分析[J]. 交通运输系统工程与信息,2015,15(1): 205-211. doi: 10.3969/j.issn.1009-6744.2015.01.034XU Yan, ZHANG Honghai, YANG Lei, et al. Analysis of air traffic flow characteristics in airport terminal area based on observed data[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 205-211. doi: 10.3969/j.issn.1009-6744.2015.01.034 LI Shanmei, XU Xiaohao, MENG Linghang. Flight conflict forecasting based on chaotic timeseries[J]. Transaction of Nanjing University of Aeronautics & Astronautics, 2012, 29(4): 388-394. CONG Wei, HU Minghua. Chaotic characteristics analysis of air traffic system[J]. Transaction of Nanjing University of Aeronautics & Astronautics, 2014, 31(6): 636-642. 郑旭芳. 空中交通流非线性特征研究[D]. 天津: 中国民航大学, 2016. 杨阳,王超. 空中交通流扇区内飞行流量优化预测管理[J]. 计算机仿真,2017,34(9): 74-78. doi: 10.3969/j.issn.1006-9348.2017.09.016YANG Yang, WANG Chao. Forecasting and management of flight flow in air traffic flow sector[J]. Computer Simulation, 2017, 34(9): 74-78. doi: 10.3969/j.issn.1006-9348.2017.09.016 雷敏,孟光,冯正进. 连续动力系统时间序列的非线性检验[J]. 物理学报,2005,540(3): 1056-1063.LEI Min, MENG Guang, FENG Zhengjin. Detecting the nonlinearity for time series sampled from continuous dynamic systems[J]. Acta Physica Sinica, 2005, 540(3): 1056-1063. 侯澍旻,李友荣,刘光临. 一种基于KS检验的时间序列非线性检验方法[J]. 电子与信息学报,2007,29(4): 808-810.HOU Shumin, LI Yourong, LIU Guanglin. A new method of detecting nonlinear for time series based on KS test[J]. Journal of Electronics & Information Technology, 2007, 29(4): 808-810. 贺国光,冯蔚东. 基于R/S分析研究交通流的长程相关性[J]. 系统工程学报,2004,19(2): 166-169. doi: 10.3969/j.issn.1000-5781.2004.02.010HE Guoguang, FENG Weidong. Study on long-term dependence of urban traffic flow based on rescaled range analysis[J]. Journal of Systems Engineering, 2004, 19(2): 166-169. doi: 10.3969/j.issn.1000-5781.2004.02.010 姬翠翠,朱华,江炜. 混沌时间序列关联维数计算中无标度区间识别的新方法[J]. 科学通报,2010,55(31): 3069-3076. 熊杰. 城市道路交通流分形特性研究[D]. 北京: 北京交通大学, 2015.