• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

无粘结预应力CFRP板加固受损钢梁疲劳试验研究

叶华文 李新舜 帅淳 曲浩博 徐勋 卫星

叶华文, 李新舜, 帅淳, 曲浩博, 徐勋, 卫星. 无粘结预应力CFRP板加固受损钢梁疲劳试验研究[J]. 西南交通大学学报, 2019, 54(1): 129-136. doi: 10.3969/j.issn.0258-2724.20180297
引用本文: 叶华文, 李新舜, 帅淳, 曲浩博, 徐勋, 卫星. 无粘结预应力CFRP板加固受损钢梁疲劳试验研究[J]. 西南交通大学学报, 2019, 54(1): 129-136. doi: 10.3969/j.issn.0258-2724.20180297
YE Huawen, LI Xinshun, SHUAI Chun, QU Haobo, XU Xun, WEI Xing. Fatigue Experimental Analysis of Damaged Steel Beams Strengthened with Prestressed Unbonded CFRP Plates[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 129-136. doi: 10.3969/j.issn.0258-2724.20180297
Citation: YE Huawen, LI Xinshun, SHUAI Chun, QU Haobo, XU Xun, WEI Xing. Fatigue Experimental Analysis of Damaged Steel Beams Strengthened with Prestressed Unbonded CFRP Plates[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 129-136. doi: 10.3969/j.issn.0258-2724.20180297

无粘结预应力CFRP板加固受损钢梁疲劳试验研究

doi: 10.3969/j.issn.0258-2724.20180297
基金项目: 国家自然科学基金资助项目(51208430);四川省青年科技创新研究团队项目(2015TD0004)
详细信息
    作者简介:

    叶华文(1982—),男,副教授,博士,研究方向为钢桥疲劳行为. E-mail: hbha2000@163.com

  • 中图分类号: U447

Fatigue Experimental Analysis of Damaged Steel Beams Strengthened with Prestressed Unbonded CFRP Plates

  • 摘要: 老旧钢桥在长期运营过程中容易疲劳开裂,严重影响桥梁结构安全,为改善受损钢梁构件的疲劳性能,采用大比例疲劳模型试验对无粘结预应力碳纤维增强复合材料(CFRP)板加固受损钢梁进行研究,基于Paris公式提出疲劳强度-寿命(S-N)曲线的确定方法,并分析不同预应力水平对受损钢梁寿命影响. 对不同预应力水平CFRP板加固的双缺口受损钢梁在循环荷载下进行疲劳试验,结果表明:施加预应力可降低裂纹扩展速率和受损钢梁残余挠度超过40%,最少可延长受损钢梁的疲劳寿命3倍;最高预应力水平所加固的受损钢梁,其疲劳寿命最少提高了8倍,且预应力CFRP板加固后缺口钢梁疲劳强度等级由51 MPa提高到75 MPa. 理论预测结果与试验结果符合较好,可作为推荐方法.

     

  • 图 1  疲劳试验设计

    Figure 1.  Fatigue test setup

    图 2  预应力CFRP板锚固与张拉技术

    Figure 2.  Anchorage and prestressing of CFRP plate

    图 3  CFRP板最大应力实测值

    Figure 3.  Measured maximum CFRP stress variations

    图 4  钢梁疲劳裂纹

    Figure 4.  Fatigue cracking

    图 5  疲劳裂纹扩展曲线

    Figure 5.  Fatigue crack growth curves

    图 6  疲劳裂纹扩展速率分析

    Figure 6.  Fatigue crack growth rates

    图 7  刚度衰减行为分析

    Figure 7.  Stiffness decay of beams

    图 8  裂纹扩展引起钢梁扭转变形

    Figure 8.  Fatigue-induced torsion of beam

    图 9  疲劳S-N曲线与试验结果对比分析

    Figure 9.  Comparison between the experimental and S-N curve results

    表  1  试件的几何和力学性能

    Table  1.   Properties of specimens

    材料 长度/mm 宽度/mm 厚度/mm 力学性能
    钢梁 3 000 175 11(底板)
    & 7(腹板)
    Es = 200 Gpa
    Sy = 235 MPa
    CFRP 1 650 100 2 Ec = 180 GPa
    Sut = 2 000 MPa
    下载: 导出CSV

    表  2  试件细节

    Table  2.   Details of specimens

    试件 有效预
    应力/MPa
    最大名义
    应力σmax/MPa
    最小名义
    应力σmin/MPa
    应力比R
    S0 114.6 14.3 0.13
    S480 480 93.0 –7.3 – 0.10
    S550 550 89.8 –10.5 – 0.10
    S600 600 87.6 –12.7 – 0.15
    S630 630 86.2 –14.1 – 0.15
    S900 900 74.1 –26.2 – 0.35
    下载: 导出CSV

    表  3  试件疲劳寿命

    Table  3.   Fatigue life of specimens

    试件 有效预应力/MPa 疲劳寿命/万次 破坏模式
    S0 27.2 完全断裂
    S480 480 32.4
    S550 550 67.8
    S600 600 109.4
    S630 630 87.3
    S900 900 > 200.0 停止试验
    下载: 导出CSV

    表  4  试件疲劳寿命计算值与实测值比较

    Table  4.   Comparison between the test and predicted results

    试件 试验值 规范公式计算值 本文方法
    中国规范 欧洲规范
    B1 15.6 17.5 10.7 11.2
    B5 82.0 39.2 24.0 25.2
    B6 62.6 37.6 23.1 24.2
    S0 27.2 40.7 24.9 26.1
    S480 32.4 43.4 27.2 51.7
    S550 67.8 44.5 28.1 53.5
    S600 109.4 46.5 29.7 56.4
    S630 87.3 46.6 29.8 56.6
    S900 >200.0 52.1 34.8 116.6
    下载: 导出CSV
  • 张喜刚,刘高,马军海,等. 中国桥梁技术的现状与展望[J]. 科学通报,2016,61(4): 415-425

    ZHANG Xigang, LIU Gao, MA Junhai, et al. Status and prospect of technical development for bridges in China[J]. China Science Bulletin, 2016, 61(4): 415-425
    SEAN C J, SCOTTCIVJAN A. Application of fiber reinforced polymer overlays to extend steel fatigue life[J]. Journal of Composites for Construction, 2003, 7(4): 331-338
    TAVAKKOLIZADEH M, SAADATMANESH H. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch[J]. Journal of Structural Engineering, 2003, 129(2): 186-196
    KIM Y J, HARRIES K A. Fatigue behavior of damaged steel beams repaired with CFRP strips[J]. Engineering Structures, 2011, 33(5): 1491-1502
    WU Gang, WANG Haitao, WU Zhishen, et al. Experimental study on the fatigue behavior of steel beams strengthened with different fiber-reinforced composite plates[J]. Journal of Composites for Construction, 2012, 16(2): 127-137
    COLOMBI P, FAVA G. Fatigue crack growth in steel beams strengthened by CFRP strips[J]. Theoretical & Applied Fracture Mechanics, 2016, 85: 173-182
    TÄLJSTEN B, HANSEN C S, SCHMIDT J W. Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates[J]. Construction and Building material, 2009, 23(4): 1665-1677
    BASSETTI A. Lamelles precontraintes en fibrescarbone pour le renforcement de pontsrivetesendommaees par fatigue (in French)[D]. Lausanne: EPFL, 2001
    COLOMBI P, BASSETTI A, NUSSBAUMER A. Delamination effects on cracked steel members reinforced by prestressed Composite Patch[J]. Theoretical and Applied Fracture Mechanics, 2003, 39(1): 61-71
    YE H W, KöNIG C, UMMENHOFER T, et al. Fatigue performance of tension steel plates strengthened with prestressed CFRP laminates[J]. Journal of Composites for Construction, 2010, 14(5): 609-615
    YE H W, UMMENHOFER T, QIANG S Z. Experimental study of flexural fatigue performance of steel girder reinforced by prestressed CFRP plate[J]. Journal of Highway and Transportation Research and Development, 2009, 26(12): 50-55
    GHAFOORI E, MOTAVALLI M, NUSSBAUMER A, et al. Determination of minimum CFRP pre-stress levels for fatigue crack prevention in retrofitted metallic beams[J]. Engineering Structures, 2015, 84(10): 29-41
    何贤锋,彭晖,罗杰. 外部粘贴预应力碳纤维板技术加固桥梁结构的工程应用与评估[J]. 中国铁道科学,2007,28(2): 139-144

    HE Xianfeng, PENG Hui, LUO Jie. Engineering application and evaluation of the bridge structure strengthened with prestressed CFRP plate[J]. China Railway Science, 2007, 28(2): 139-144
    TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78(6): 131-143
    叶列平,冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报,2006,39(3): 24-36

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36
    GHAFOORI E, MOTAVALLI M, NUSSBAUMER A, et al. Design criterion for fatigue strengthening of riveted beams in a 120-year-old railway metallic bridge using pre-stressed CFRP plates[J]. Composites Part B, 2015, 68: 1-13
    邓军,黄培彦. CFRP板加固钢梁界面应力的理论与试验研究[J]. 华南理工大学学报 (自然科学版),2007,35(7): 10-14

    DENG Jun, HUANG Yanpei. Theoretical and experimental study on interfacial stresses of steel beam strengthened with CFRP plates[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(7): 10-14
    郑云,陈煊,李忠煜,等. 碳纤维加固钢结构的疲劳寿命分析[J]. 钢结构,2013,28(2): 1-6

    ZHENG Yun, CHEN Xuan, LI Zhongyu, et al. Fatigue life ansys of CFRP strengthened steel structure[J]. Steel Construction , 2013, 28(2): 1-6
    GHAFOORI E, MOTAVALLI M, BOTSIS J, et al. Fatigue strengthening of damaged metallic beams using prestressedunbonded and bonded CFRP plates[J]. International Journal of Fatigue, 2012, 44(2): 303-15
    European Committee Standardization. Eurocode 3: design of steel structures-part 1-9: fatigue BS EN 1993-1-9: 2005[S]. [S.l.]: The Authority of the Standards Policy and Strategy Committee, 2005
    中华人民共和国住房和城乡建设部. 钢结构设计规范: GB50017—2017[S]. 北京: 中国建筑工业出版社, 2017
    BARSOM J M, ROLFE S T. Fracture and fatigue control in structures: applications of fracture mechanics[M]. West Conshohocken: ASTM, 1999: 5-9
    HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Mode I fatigue crack arrest in tensile steel members using prestressed CFRP plates[J]. Composite Structures, 2017, 178: 119-134
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  211
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-06-13
  • 网络出版日期:  2018-06-20
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回