• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

LM-CDBN超高层变形预测模型的构建与应用

邱冬炜 王彤 段明旭 罗德安 王来阳

邱冬炜, 王彤, 段明旭, 罗德安, 王来阳. LM-CDBN超高层变形预测模型的构建与应用[J]. 西南交通大学学报, 2020, 55(2): 310-316. doi: 10.3969/j.issn.0258-2724.20180293
引用本文: 邱冬炜, 王彤, 段明旭, 罗德安, 王来阳. LM-CDBN超高层变形预测模型的构建与应用[J]. 西南交通大学学报, 2020, 55(2): 310-316. doi: 10.3969/j.issn.0258-2724.20180293
QIU Dongwei, WANG Tong, DUAN Mingxu, LUO Dean, WANG Laiyang. Construct and Application of LM-CDBN Deformation Prediction Model for Supertall Buildings[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 310-316. doi: 10.3969/j.issn.0258-2724.20180293
Citation: QIU Dongwei, WANG Tong, DUAN Mingxu, LUO Dean, WANG Laiyang. Construct and Application of LM-CDBN Deformation Prediction Model for Supertall Buildings[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 310-316. doi: 10.3969/j.issn.0258-2724.20180293

LM-CDBN超高层变形预测模型的构建与应用

doi: 10.3969/j.issn.0258-2724.20180293
基金项目: 国家重点研发计划资助项目(2017YFB0503700);中国住房和城乡建设部科学技术计划资助项目(2015-K8-050)
详细信息
    作者简介:

    邱冬炜(1978—),男,副教授,博士,研究方向为建构筑物变形监测与结构检测、精密工程测量与数据处理,E-mail:qiudw@bucea.edu.cn

    通讯作者:

    罗德安(1968—),男,教授,博士,研究方向为工程测量、智能测绘技术,E-mail:luodean@bucea.edu.cn

  • 中图分类号: P258

Construct and Application of LM-CDBN Deformation Prediction Model for Supertall Buildings

  • 摘要: 为提高超高层建筑变形预测精度,对附有条件的深度信念网络(conditional deep belief network,CDBN)模型中权值及阈值调整方法进行了改进,使用LM (Levenberg-Marquardt)算法作为新的模型定权机制,构建了LM-CDBN网络模型;将构建的LM-CDBN超高层变形预测模型应用于一座298 m超高层建筑中;然后用训练误差、预测值拟合度、预测结果稳定性组成的综合评价体系对模型进行了评价;最后,将LM-CDBN模型分别与深度信念模型(deep belief network,DBN)、极限学习机(extreme learning machine,ELM)、基于无迹卡尔曼滤波的支持回归向量机(unscented Kalman filter-support vector regression,UKF-SVR)进行了预测结果对比. 结果表明:在超高层建筑的变形预测中,相比DBN、ELM和UKF-SVR,LM-CDBN预测精度分别提升了32%、55%及24%,模型的信息提取稳定性及处理时变系统非线性问题的泛化能力得到了提高.

     

  • 图 1  第1层隐含层重构误差

    Figure 1.  Reconstruction error of the first hidden layer

    图 2  第2~4层重构误差

    Figure 2.  Reconstruction errors of the second to the fourth hidden layers

    图 3  评价标准误差统计

    Figure 3.  Evaluation standard errors

    图 4  R统计

    Figure 4.  Summary of R

    表  1  A1办公楼监测数据表

    Table  1.   Monitoring data of A1 office building

    序号时间位移变形值/mm温度/℃风速/(m•s−1光照强度/Lx
    1 2016-08-23 00:00 28.281 24.1 5.9 2.351
    2 2016-08-23 06:00 27.556 23.3 5.4 20.307
    3 2016-08-23 12:00 28.428 24.2 5.5 434.243
    4 2016-08-23 18:00 29.779 24.9 5.4 267.839
    5 2016-08-24 00:00 30.250 24.8 4.9 4.299
    6 2016-08-24 06:00 27.895 24.1 5.2 37.456
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    139 2016-09-26 12:00 49.753 31.9 6.7 780.412
    140 2016-09-26 18:00 49.341 27.6 7.5 413.485
    下载: 导出CSV

    表  2  预测结果对比表

    Table  2.   Prediction comparison

    观测时间$\hat y/{\rm{mm}}$CDBNLM-CDBNELMUKF- SVR
    预测值/mmXRE/%预测值/mmXRE/%预测值/mmXRE/%预测值/mmXRE/%
    2016-08-24 12:00 47.510 45.369 4.51 46.214 2.73 41.535 12.58 52.683 10.89
    2016-08-24 18:00 46.653 45.173 3.17 45.537 2.39 40.083 14.08 44.297 5.05
    2016-08-25 00:00 46.025 44.345 3.65 45.027 2.17 43.629 5.21 46.913 1.93
    2016-08-25 06:00 46.769 44.220 5.45 45.626 2.44 45.756 2.17 48.587 3.89
    2016-08-25 12:00 46.385 44.342 4.40 45.315 2.31 49.168 6.00 45.179 2.60
    2016-08-25 18:00 48.308 46.040 4.69 46.829 3.06 47.051 2.60 50.576 4.69
    2016-08-26 00:00 49.739 48.576 2.34 47.891 3.72 44.774 9.98 52.940 6.44
    2016-08-26 06:00 52.424 47.736 8.94 49.742 5.12 46.998 10.35 51.630 1.51
    2016-08-26 12:00 49.753 47.547 4.43 47.906 3.71 48.372 2.78 48.568 2.38
    2016-08-26 18:00 49.341 47.360 4.01 47.603 3.52 47.187 4.37 50.018 1.37
    XARE/% 4.56 3.12 7.01 4.08
    下载: 导出CSV

    表  3  预测结果评价表

    Table  3.   Evaluation for different prediction results

    评价标准CDBNLM-CDBNELMUKF-SVR
    XMSE/mm 4.397 0 2.559 0 15.559 0 5.570 0
    XMRE/mm 0.023 9 0.004 7 0.059 1 0.031 4
    XMAE/mm 0.014 0 0.003 5 0.033 3 0.017 5
    XRMSE/mm 0.017 1 0.009 5 0.041 3 0.021 3
    R% 97 98 92 96
    下载: 导出CSV
  • 邓勇,张冠宇,李宗春,等. 遗传小波神经网络在变形预报中的应用[J]. 测绘科学,2012,37(5): 183-186.

    DENG Yong, ZHANG Guanyu, LI Zongchun, et al. Application of genetic wavelet neural network in deformation forecast[J]. Science of Surveying and Mapping, 2012, 37(5): 183-186.
    段明旭,邱冬炜,李婉,等. 改进灰色人工神经网络模型的超高层建筑变形预测[J]. 测绘科学,2017,42(4): 141-146.

    DUAN Mingxu, QIU Dongwei, LI Wan, et al. The GM-BPNN prediction research in the deformation forecasting of the super high-rise building[J]. Science of Surveying and Mapping, 2017, 42(4): 141-146.
    WANG Xiaoyu, YANG Kan, SHEN Changsong. Study on MPGA-BP of gravity dam deformation prediction[J]. Mathematical Problems in Engineering, 2017, 2017(6): 1-13.
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
    CHEN H, MURRAYA F. Continuous restricted Boltzmann machine with an implementable training algorithm[J]. IEE Proceedings—Vision,Image and Signal Processing, 2003, 150(3): 153-158. doi: 10.1049/ip-vis:20030362
    周晓莉,张丰,杜震洪,等. 基于CRBM算法的时间序列预测模型研究[J]. 浙江大学学报(理学版),2016,43(4): 442-451. doi: 10.3785/j.issn.1008-9497.2016.04.011

    ZHOU Xiaoli, ZHANG Feng, DU Zhenhong, et al.A study on time series prediction model based on CRBM algorithm[J]. Journal of Zhejiang University (Science Edition), 2016, 43(4): 442-451. doi: 10.3785/j.issn.1008-9497.2016.04.011
    HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
    CHEN Siqi, AMMAR H B, TUYLS K, et al. Conditional restricted Boltzmann machines for negotiations in highly competitive and complex domains[C]//International Joint Conference on Artificial Intelligence. Beijing: AAAI, 2013: 69-75.
    SPILIOPOULOU A. Investigation of deep CRBM networks in modeling sequential data[D]. Edinburgh: University of Edinburgh, 2008.
    MNIH V L H, HINTON G E. Conditional restricted Boltzmann machines for structured output prediction[C]//Twenty-Seventh Conference on Uncertainty in Artificial Intelligence. Barcelona: AUAI Press, 2011: 514-522.
    周晓莉. 基于深度学习的浙江近岸船舶数据赤潮生物量趋势性预测研究[D]. 杭州: 浙江大学, 2016.
    MADSEN K, NIELSEN H B, TINGLEFF O. Methods for nonlinear least squares problems[J]. Society for Industrial & Applied Mathematics, 2004, 2012(1): 1409-1415.
    QUESADA-OLMO N, JIMENEZ-MATINEZ M J, FARJAS-ABADIAM. Real-time high-rise building monitoring system using global navigation satellite system technology[J]. Measurement, 2018, 123(1): 115-124.
    LECUN Y, BENGIO Y, HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    GAO Jun. Newton-Gauss curvature matrix based cdbnfor online edible fungus drying prediction model[J]. Future Generation Computer Systems, 2017, 81(1): 273-279.
    HRASKO R, PACHECO A G C, KROHLING RA. Time series prediction using restricted Boltzmann machines and backpropagation[C]//Information Technology and Quantitative Management. Suzhou: Elsevier, 2015: 990-999.
    BA J, HINTON G E, MNITH V, et al. Using fast weights to attend to the recent past[C]//Advances in Neural Information Processing Systems. Barcelona: Elsevier, 2016: 4331-4339.
    SRIVASTAVA N, SALAKHUTDINOV R, HINTON G E. Modeling documents with a deep Boltzmann machine[C]//Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence. Bellevue: AUAI press, 2013: 616-624.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  336
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 修回日期:  2018-06-06
  • 网络出版日期:  2018-07-08
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回