Texture Depth Measured Method of Pavement Based on Static and Dynamic Anti-Sliding Characteristics
-
摘要: 路面湿滑是诱发交通事故的重要因素,为了解决构造深度和摩擦系数分别从路面静态纹理和动态摩擦运动角度方面反映路面抗滑性时存在的不一致问题,基于激光视觉测量方法得到沥青路面点云数据,提出一种有效构造深度测量算法;首先利用B样条对点云数据进行断点插值,在研究轮胎和路面接触摩擦的几何结构和抗滑机理的基础上,修正路表凹陷点数据;采用断面法估算构造深度,并和摩擦系数测试仪所得的数据进行相关性分析. 研究结果表明:本算法得到的横向和纵向平均构造深度与摩擦系数的相关系数分别为0.896和0.887,优于铺砂法的0.504;该方法能通过静态的构造深度隐性地反映动态的摩擦系数,兼具激光视觉测量方法的高效率和摩擦系数刻画抗滑性能的客观性,达到效率和精度的统一.Abstract: The slippery surface of asphalt pavement is one of the leading major causes of traffic accidents. The mean texture depth (MTD) reflects the performance of skid resistance using a static texture of the pavement, while the friction coefficient reflects it through dynamic friction motion. Aimed to eliminate the difference between aforementioned two factors, a novel measurement method was proposed for effective texture depth. The point cloud data obtained by laser vision technology was studied. Firstly, B-spline was employed to interpolate the break-point of cloud data. Secondly, the concave points were removed according to the geometrical construction and anti-sliding mechanism of contact friction between the tire and road surface. Finally, the correlation between the MTD estimated by cross section method and data measured by the friction coefficient tester was analyzed. The results show that both the transverse and longitudinal MTD based on the proposed model could achieve stronger correlations with friction coefficient, compared with the traditional sand patch test. Their correlation values are 0.896 and 0.887, respectively, which are better than 0.504 of the sand patch test. The proposed method can implicitly reflect the dynamic friction coefficient through the static texture depth, and take full advantage of the high efficiency of the laser vision measurement and the objectivity of the friction coefficient, thereby achieve the desired balance of accuracy and efficiency.
-
Key words:
- asphalt pavement /
- laser vision /
- B-spline /
- friction coefficient /
- texture depth
-
表 1 摩擦系数对比
Table 1. Friction coefficient contrast
构造深度/mm 摩擦系数(无量纲) 拉毛 露石 刻槽 ≤ 0.7 0.97 0.95 0.55 (0.7,0.8] 0.99 0.97 0.64 (0.8,0.9] 0.98 0.88 0.56 (0.9,1.0] 1.07 0.82 0.62 表 2 MTD与MPD平均值
Table 2. Mean results of MTD and MPD
mm 试件编号 hMPD hMTD 1-1 0.616 9 0.659 0 1-2 0.631 4 0.608 6 1-3 0.429 1 0.525 9 1-4 0.459 1 0.555 1 1-5 0.660 5 0.622 6 1-6 0.856 3 0.903 4 1-7 0.869 5 0.859 2 1-8 0.917 2 0.935 3 1-9 0.898 5 0.865 6 1-10 0.852 3 0.889 9 表 3 传统算法和本文算法结果对比
Table 3. Comparative results between traditional algorithm and its algorithm
试件编号 铺砂法检测MTD/mm 本文算法检测/mm 摩擦系数 横向MPD 纵向MTD 2-1 0.715 6 0.693 5 0.652 8 0.89 2-2 0.651 2 0.705 1 0.651 2 0.91 2-3 0.745 9 0.543 3 0.505 2 0.85 2-4 0.652 1 0.535 3 0.605 8 0.87 2-5 0.722 7 0.691 2 0.655 6 0.92 2-6 0.869 7 0.885 0 0.831 4 0.94 2-7 0.952 4 0.895 6 0.895 6 0.96 -
陈晓梅,田力. 基于激光轮廓检测仪的沥青路面宏观轮廓特征评价指标研究[J]. 科学技术与工程,2015,15(36): 91-98. doi: 10.3969/j.issn.1671-1815.2015.36.016CHEN Xiaomei, TIAN Li. Macroscopic characteristics of the asphalt pavement evaluation study outline laser-based contour detector[J]. Science Technology and Engineering, 2015, 15(36): 91-98. doi: 10.3969/j.issn.1671-1815.2015.36.016 马荣贵,王建锋,李平. 沥青路面构造深度精确检测方法研究[J]. 科学技术与工程,2014,14(8): 265-268. doi: 10.3969/j.issn.1671-1815.2014.08.052MA Ronggui, WANG Jianfeng, LI Ping. Study on precise detection method of asphalt pavement depth[J]. Science Technology and Engineering, 2014, 14(8): 265-268. doi: 10.3969/j.issn.1671-1815.2014.08.052 王晓嘉,高隽,王磊. 激光三角法综述[J]. 仪器仪表学报,2004,25(4): 601-608.WANG Xiaojia, GAO Juan, WANG Lei. Surrey on the laser triangulation[J]. Chinese Journal of Scientific Instrument, 2004, 25(4): 601-608. 胡克波,白秀琴,谢磊. 基于机器视觉的沥青路面微观形貌检测技术研究[J]. 交通与计算机,2008,26(4): 99-102.HU Kebo, BAI Xiuqin, XIE Lei. Research on microscopic morphology detection of asphalt pavement based on machine vision[J]. Traffic and Computer, 2008, 26(4): 99-102. 秦浪朝. 路面摩擦系数的检测与评价方法的研究[D]. 重庆: 重庆交通大学, 2015. 刘洪辉. 水泥混凝土路面抗滑性能评价指标与方法研究[D]. 西安: 长安大学, 2009. 赵方冉,邱团结,张皓. 宏观构造特征对水泥混凝土道面抗滑性的影响[J]. 中国公路学报,2016,29(7): 15-21.ZHAO Fangran, QIU Tuanjie, ZHANG Hao. Effect of macro-texture features no anti-sliding characteristics of cement concrete pavement[J]. China Journal of Highway and Transport, 2016, 29(7): 15-21. 徐华艳. 基于线结构光的沥青路面构造深度算法研究[D]. 西安: 长安大学, 2013. 冯兴乐,徐华艳,李伟. 沥青路面结构光条质心定位算法[J]. 光电子•激光,2014,25(3): 514-520.FENG Xingle, XU Huayan, LI Wei. Centroid position algorithm of structure optical stripe in asphalt pavement test[J]. Journal of Optoelectronics• Laser, 2014, 25(3): 514-520. 窦光武. 基于断面高程的路面构造深度计算模型研究[J]. 公路交通科技,2015,32(1): 50-55. doi: 10.3969/j.issn.1002-0268.2015.01.009DOU Guangwu. Research of calculation model of pavement texture depth based on profile elevation[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 50-55. doi: 10.3969/j.issn.1002-0268.2015.01.009 苗英豪,曹东伟,刘清泉. 沥青路面表面宏观构造与抗滑性能间的关系[J]. 北京工业大学学报,2011,37(4): 547-553.MIAO Yinghao, CAO Dongwei, LIU Qingquan. Relationship between surface macro-texture and skid resistance of asphalt pavement[J]. Journal Beijing University of Technology, 2011, 37(4): 547-553. 邱志雄. 基于宏观轮廓的沥青路面抗滑性能实验研究[D]. 广州: 华南理工大学, 2014. 乐亚南. 基于曲线拟合理论的点云数据处理分析[D]. 成都: 西南交通大学, 2012. SENG P, HARON H. Surface reconstruction techniques:a review[J]. Artificial Intelligence Review, 2014, 42(1): 59-78. 王春申,阿木古楞,刘颖. 基于三次样条的多焦面曲线拟合[J]. 微型机与应用,2011,30(10): 48-50. doi: 10.3969/j.issn.1674-7720.2011.10.015WANG Chunshen, AMU Guleng, LIU Ying. Curve fitting of multi-focus image based on cubic spline[J]. Microcomputer & its Applications, 2011, 30(10): 48-50. doi: 10.3969/j.issn.1674-7720.2011.10.015 周兴林,蒋难得,肖旺新,等. 基于激光视觉的沥青路面构造深度测量方法[J]. 中国公路学报,2014,27(3): 11-16.ZHOU Xinglin, JIANG Nande, XIAO Wangxin, et al. Measurement method for mean texture depth of asphalt pavement based on laser vision[J]. China Journal of Highway and Transport, 2014, 27(3): 11-16. HALIL S, NICHLOAL F. Evaluation and comparison macro-texture and friction measurement methods[J]. Journal of Civil Engineering and Management, 2013, 19(3): 387-399. doi: 10.3846/13923730.2012.746237 CUI Xinzhuang, ZHOU Xinglin, LOU Junjie, et al. Measurement method of asphalt pavement mean texture depth based on multi-line laser and binocular vision[J]. International Journal of Pavement Engineering, 2017, 18(5): 459-471. SENGOZ B, TOPAL A, TANYEL S. Comparison of pavement surface texture determination by sand patch test and 3D laser scanning[J]. Civil Engineering, 2012, 56(1): 73-78. 文静. 数字化技术评价沥青路面构造深度研究[D]. 西安: 长安大学, 2009.