Transverse Seismic Pounding Effect and Pounding Reduction of Simply-Supported Girder Bridge for High-Speed Railway
-
摘要: 为了研究高铁简支梁桥横向地震碰撞效应及减隔震装置的减碰效果,以7跨32 m标准跨径简支梁桥为例,通过试验测定挡块的实际力-变形曲线,并基于SAP2000建立了考虑地震碰撞效应的有限元模型.在此基础之上,分析了轨道系统、挡块-垫石初始间距及挡块钢板厚度对桥梁地震响应的影响,并进一步探讨了橡胶垫层、铅芯橡胶支座(LRB)、摩擦摆支座(FPB)、高阻尼橡胶支座(HDR)及液体粘滞阻尼器的减碰效果. 研究结果表明:轨道系统的约束作用会显著改变各桥跨之间的地震力分配;在所考虑的最大地震激励下,碰撞力峰值达2.18 MN,挡块的非线性效应显著;对于本文算例而言,挡块-垫石间距设为3 cm,挡块钢板厚度取32 mm是一个较为合理的配置;减隔震装置能够有效地改善桥梁结构抗震性能,且其防碰减震效果受地震波频谱特性及自身作用机理的影响,其中,FPB支座具有较强的适用性,且安装FPB支座后各桥跨之间的地震力分配更加均匀.Abstract: A 32 m standard-span simply-supported girder bridge with 7 spans for high-speed railway was used as a prototype to study the effects of the earthquake-induced transverse pounding, as well as the pounding reduction effects of various isolation devices. The actual force-deformation curves of shear keys were determined experimentally and a finite element model considering pounding was established using SAP2000. On this basis, influences of the rail system, the initial gap between the shear keys and bearing padstones, and the thickness of shear-key plates on seismic responses of the bridge were analyzed. Then, the pounding reduction effects of rubber bumpers, lead rubber bearings (LRBs), friction pendulum bearings (FPBs), high damping rubber bearings (HDRs), and fluid viscous dampers were discussed. The results are as follows: the rail system can significantly alter the distribution of seismic forces between bridge spans. Under excitations of the maximum earthquakes considered, the nonlinear effect of shear keys is significant, with the maximum pounding force of 2.18 MN. For the sample bridge presented in this paper, it is a reasonable configuration to set the initial gap between the pounding members as 3 cm and the thickness of shear-key plates as 32 mm. The seismic isolation devices can improve the seismic performance of the bridge; their pounding reduction effects are affected by spectral characteristics of ground motions as well as their own mechanisms. Among them, the FPB has better applicability and the seismic forces between different spans become more uniform after the installation of FPBs.
-
表 1 两种模型横向自振频率比较
Table 1. Comparison of transverse natural frequencies between the two models
Hz 模态阶数 忽略轨道 考虑轨道 1 3.268 3.523 2 4.382 4.905 3 4.878 6.164 4 5.539 7.406 5 6.179 9.054 6 7.750 10.846 表 2 轨道系统对各项地震响应峰值的影响
Table 2. Influence of the rail system on the maximum seismic responses
桥墩
编号挡块
编号碰撞力/MN 碰撞次数/次 墩梁相对位移/cm 墩顶位移/mm 墩底剪力/MN 忽略轨道 考虑轨道 忽略轨道 考虑轨道 忽略轨道 考虑轨道 忽略轨道 考虑轨道 忽略轨道 考虑轨道 1# 1# 1.80 0.57 3 1 5.12 3.05 12.8 14.2 4.27 4.79 2# 1.62 — 3 — 2# 3# 2.12 1.77 4 4 7.48 4.86 17.6 17.3 5.30 5.41 4# 1.75 1.66 4 4 3# 5# 1.87 2.18 3 4 5.57 7.96 17.6 24.3 5.12 7.88 6# 1.68 2.09 4 4 注:“—”表示未发生碰撞. 表 3 减隔震装置的防碰减震效果
Table 3. Pounding reduction effects of the seismic isolation devices
地震激励 减隔震装置 碰撞力/MN 墩梁相对位移/cm 墩顶位移/mm 墩底剪力/MN 峰值 减幅/% 峰值 减幅/% 峰值 减幅/% 峰值 减幅/% El-Centro波 无 2.182 7.96 24.30 7.880 橡胶垫层 1.695 22.3 5.42 31.9 16.90 30.5 4.998 36.6 LRB支座 1.526 30.1 3.71 53.4 19.02 21.7 5.704 27.6 FPB支座 1.545 29.2 3.72 53.3 14.18 41.6 4.764 39.5 HDR支座 1.580 27.6 4.51 43.3 23.00 5.3 7.078 10.2 粘滞阻尼器 1.494 31.5 4.50 43.5 16.78 30.9 5.091 35.4 Taft波 无 2.080 6.64 19.55 6.326 橡胶垫层 1.520 26.9 4.87 26.7 14.83 24.1 4.698 25.7 LRB支座 1.500 27.9 3.62 45.5 18.92 3.2 5.962 5.8 FPB支座 1.482 28.8 4.09 38.4 16.77 14.2 4.919 22.2 HDR支座 1.478 28.9 4.10 38.3 21.52 –10.1 6.590 –4.2 粘滞阻尼器 1.362 34.5 3.60 45.8 14.96 23.5 4.720 25.4 汶川波 无 — 3.09 12.98 3.977 橡胶垫层 0.796 — 1.57 47.6 15.80 –21.7 5.022 –26.3 LRB支座 — — 1.08 65.5 4.63 64.3 1.511 62.0 FPB支座 — — 1.14 63.6 2.94 77.3 1.015 74.5 HDR支座 — — 2.27 27.5 4.17 67.9 1.375 65.4 粘滞阻尼器 — — 2.18 30.4 14.68 –13.1 4.645 –16.8 注:“—”表示未发生碰撞;减幅为负值表示地震响应增大. -
王东升,郭迅,孙治国,等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动,2009,29(3): 84-94.WANG Dongsheng, GUO Xun, SUN Zhiguo, et al. Damage to highway bridges during Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3): 84-94. LI J, PENG T, XU Y. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 7(4): 337-344. doi: 10.1007/s11803-008-1005-6 杨孟刚,孟栋梁,戴良缘. 考虑轨道约束的高铁简支梁桥横向地震碰撞效应[J]. 中南大学学报(自然科学版),2018,49(4): 916-924.YANG Menggang, MENG Dongliang, DAI Liangyuan. Transverse seismic pounding effect for simply-supported girder bridges of high-speed railway considering track constraint[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 916-924. 卫康华. 基于SAP2000的高铁简支梁桥横向地震碰撞效应及减隔震研究[D]. 长沙: 中南大学, 2017. 李兰平,卜一之,贾宏宇, 等. 非平稳地震作用下高墩桥梁体间隙需求分析[J]. 西南交通大学学报,2019,54(1): 113-120.LI Lanping, BU Yizhi, JIA Hongyu, et al. Analysis of required separation distances of high-pier bridges subjected to non-stationary ground motions[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 113-120. 李晰,贾宏宇,李倩,等. 碰撞对山区高墩桥弹塑性动力响应的影响[J]. 西南交通大学学报,2018,53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014LI Xi, JIA Hongyu, LI Qian, et al. Effect of pounding on elastic-plastic dynamic response of high pier bridge in mountainous area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014 贾宏宇,杜修力,罗楠,等. 随机地震激励下高墩桥梁碰撞可靠度分析[J]. 西南交通大学学报,2018,53(1): 88-94. doi: 10.3969/j.issn.0258-2724.2018.01.011JIA Hongyu, DU Xiuli, LUO Nan, et al. Dynamic reliability analysis on pounding of high-pier bridges subjected to stochastic seismic excitations[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 88-94. doi: 10.3969/j.issn.0258-2724.2018.01.011 GOEL R K, CHOPRA A K. Role of shear keys in seismic behavior of bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2008, 13(4): 398-408. doi: 10.1061/(ASCE)1084-0702(2008)13:4(398) 邓育林,雷凡,何雄君. 地震作用下高墩桥梁横向碰撞效应研究[J]. 桥梁建设,2014,44(3): 25-31.DENG Yulin, LEI Fan, HE Xiongjun. Study of transverse pounding effect of high-rise pier rigid-frame bridges under action of earthquake[J]. Bridge Construction, 2014, 44(3): 25-31. LI J, XIANG N, TANG H, et al. Shake-table tests and numerical simulation of an innovative isolation system for highway bridges[J]. Soil Dynamics & Earthquake Engineering, 2016, 86: 55-70. BOZORGZADEH A, MEGALLY S, RESTREPO J I, et al. Capacity evaluation of exterior sacrificial shear keys of bridge abutments[J]. Journal of Bridge Engineering, 2006, 11(5): 555-565. doi: 10.1061/(ASCE)1084-0702(2006)11:5(555) HAN Q, ZHOU Y, OU Y, et al. Seismic behavior of reinforced concrete sacrificial exterior shear keys of highway bridges[J]. Engineering Structures, 2017, 139: 59-70. doi: 10.1016/j.engstruct.2017.02.034 CHEN J, HAN Q, LIANG X, et al. Effect of pounding on nonlinear seismic response of skewed highway bridges[J]. Soil Dynamics & Earthquake Engineering, 2017, 103: 151-165. 杨孟刚,潘增光,乔建东,等. 高速铁路列车制动力对简支梁桥地震碰撞效应影响研究[J]. 振动与冲击,2014,33(15): 167-173.YANG Menggang, PAN Zengguang, QIAO Jiandong, et al. Influence of train braking force on seismic pounding effect of a high-speed railway simply supported bridge[J]. Journal of Vibration and Shack, 2014, 33(15): 167-173. 黄勇,王君杰,韩鹏,等. 考虑支座破坏的连续梁桥地震反应分析[J]. 土木工程学报,2010,43: 217-223.HUANG Yong, WANG Junjie, HAN Peng, et al. Seismic response analysis of continuous bridges tanking account of bearing failure[J]. China Civil Engineering Journal, 2010, 43: 217-223. KAZUHIKO K, GAKU S. Effect of restrainers to mitigate pounding between adjacent decks subjected to a strong ground motion[C]//12WCEE. New Zealand: [s.n.], 2000: 1435-1443. JANKOWSKI R, WILDE K, FUJINO Y. Reduction of pounding effects in elevated bridges during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(2): 195-212. 陈令坤,蒋丽忠,王丽萍,等. 高速铁路铅芯橡胶支座桥梁隔震研究[J]. 华中科技大学学报(自然科学版),2012,40(1): 77-81.CHEN Lingkun, JIANG Lizhong, WANG Liping. Seismic isolation application to high-speed railway bridges with lead rubber bearings[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2012, 40(1): 77-81. American Association of State Highway and Transportation Officials. AASSHTO guide specifications for LRFD seismic bridge design[S]. Washington D. C.: AASHTO, 2009. 中华人民共和国交通运输部. 公路桥梁高阻尼隔震橡胶支座: JT/T 842—2012[S]. 北京: 人民交通出版社, 2012.