• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高铁简支梁桥横向地震碰撞效应及减震研究

杨孟刚 孟栋梁 卫康华 乔建东

杨孟刚, 孟栋梁, 卫康华, 乔建东. 高铁简支梁桥横向地震碰撞效应及减震研究[J]. 西南交通大学学报, 2020, 55(1): 100-108. doi: 10.3969/j.issn.0258-2724.20180277
引用本文: 杨孟刚, 孟栋梁, 卫康华, 乔建东. 高铁简支梁桥横向地震碰撞效应及减震研究[J]. 西南交通大学学报, 2020, 55(1): 100-108. doi: 10.3969/j.issn.0258-2724.20180277
YANG Menggang, MENG Dongliang, WEI Kanghua, QIAO Jiandong. Transverse Seismic Pounding Effect and Pounding Reduction of Simply-Supported Girder Bridge for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 100-108. doi: 10.3969/j.issn.0258-2724.20180277
Citation: YANG Menggang, MENG Dongliang, WEI Kanghua, QIAO Jiandong. Transverse Seismic Pounding Effect and Pounding Reduction of Simply-Supported Girder Bridge for High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 100-108. doi: 10.3969/j.issn.0258-2724.20180277

高铁简支梁桥横向地震碰撞效应及减震研究

doi: 10.3969/j.issn.0258-2724.20180277
基金项目: 国家自然科学基金(51678491,51478390);四川省应用基础重大前沿项目(2017JY0003)
详细信息
    作者简介:

    杨孟刚(1976—),男,教授,研究方向为桥梁抗震,E-mail:mgyang@csu.edu.cn

  • 中图分类号: U443.8

Transverse Seismic Pounding Effect and Pounding Reduction of Simply-Supported Girder Bridge for High-Speed Railway

  • 摘要: 为了研究高铁简支梁桥横向地震碰撞效应及减隔震装置的减碰效果,以7跨32 m标准跨径简支梁桥为例,通过试验测定挡块的实际力-变形曲线,并基于SAP2000建立了考虑地震碰撞效应的有限元模型.在此基础之上,分析了轨道系统、挡块-垫石初始间距及挡块钢板厚度对桥梁地震响应的影响,并进一步探讨了橡胶垫层、铅芯橡胶支座(LRB)、摩擦摆支座(FPB)、高阻尼橡胶支座(HDR)及液体粘滞阻尼器的减碰效果. 研究结果表明:轨道系统的约束作用会显著改变各桥跨之间的地震力分配;在所考虑的最大地震激励下,碰撞力峰值达2.18 MN,挡块的非线性效应显著;对于本文算例而言,挡块-垫石间距设为3 cm,挡块钢板厚度取32 mm是一个较为合理的配置;减隔震装置能够有效地改善桥梁结构抗震性能,且其防碰减震效果受地震波频谱特性及自身作用机理的影响,其中,FPB支座具有较强的适用性,且安装FPB支座后各桥跨之间的地震力分配更加均匀.

     

  • 图 1  高铁简支梁桥总体布置

    Figure 1.  Overall layout of the simply-supported girder bridge for high-speed railway

    图 2  挡块布置

    Figure 2.  Layout of the shear keys

    图 3  挡块测试

    Figure 3.  Tests of the shear keys

    图 4  有限元模型

    Figure 4.  Finite element model

    图 5  支座力学模型

    Figure 5.  Mechanical models of the bearings

    图 6  轨道约束对地震响应时程的影响

    Figure 6.  Influence of the rail system on the time histories of seismic responses

    图 7  5# 挡块力-变形曲线

    Figure 7.  Force-deformation curve of the 5# shear key

    图 8  挡块-垫石间距对地震响应峰值的影响

    Figure 8.  Influence of the initial gap between the shear keys and bearing padstones on the maximum seismic responses

    图 9  挡块钢板厚度对地震响应峰值的影响

    Figure 9.  Influence of the thickness of shear-key plates on the maximum seismic responses

    图 10  减隔震装置的力学模型

    Figure 10.  Mechanical models of seismic isolation devices

    图 11  在PGA为0.3g的El-Centro波激励下FPB支座的减隔震效果

    Figure 11.  Seismic reduction of FPBs when subjected to the El-Centro ground motion at PGA = 0.3g

    表  1  两种模型横向自振频率比较

    Table  1.   Comparison of transverse natural frequencies between the two models Hz

    模态阶数忽略轨道考虑轨道
    1 3.268 3.523
    2 4.382 4.905
    3 4.878 6.164
    4 5.539 7.406
    5 6.179 9.054
    6 7.750 10.846
    下载: 导出CSV

    表  2  轨道系统对各项地震响应峰值的影响

    Table  2.   Influence of the rail system on the maximum seismic responses

    桥墩
    编号
    挡块
    编号
    碰撞力/MN碰撞次数/次墩梁相对位移/cm墩顶位移/mm墩底剪力/MN
    忽略轨道考虑轨道 忽略轨道考虑轨道 忽略轨道考虑轨道 忽略轨道考虑轨道 忽略轨道考虑轨道
    1# 1# 1.80 0.57 3 1 5.12 3.05 12.8 14.2 4.27 4.79
    2# 1.62 3
    2# 3# 2.12 1.77 4 4 7.48 4.86 17.6 17.3 5.30 5.41
    4# 1.75 1.66 4 4
    3# 5# 1.87 2.18 3 4 5.57 7.96 17.6 24.3 5.12 7.88
    6# 1.68 2.09 4 4
     注:“—”表示未发生碰撞.
    下载: 导出CSV

    表  3  减隔震装置的防碰减震效果

    Table  3.   Pounding reduction effects of the seismic isolation devices

    地震激励减隔震装置碰撞力/MN墩梁相对位移/cm墩顶位移/mm墩底剪力/MN
    峰值减幅/% 峰值减幅/% 峰值减幅/% 峰值减幅/%
    El-Centro波 2.182 7.96 24.30 7.880
    橡胶垫层 1.695 22.3 5.42 31.9 16.90 30.5 4.998 36.6
    LRB支座 1.526 30.1 3.71 53.4 19.02 21.7 5.704 27.6
    FPB支座 1.545 29.2 3.72 53.3 14.18 41.6 4.764 39.5
    HDR支座 1.580 27.6 4.51 43.3 23.00 5.3 7.078 10.2
    粘滞阻尼器 1.494 31.5 4.50 43.5 16.78 30.9 5.091 35.4
    Taft波 2.080 6.64 19.55 6.326
    橡胶垫层 1.520 26.9 4.87 26.7 14.83 24.1 4.698 25.7
    LRB支座 1.500 27.9 3.62 45.5 18.92 3.2 5.962 5.8
    FPB支座 1.482 28.8 4.09 38.4 16.77 14.2 4.919 22.2
    HDR支座 1.478 28.9 4.10 38.3 21.52 –10.1 6.590 –4.2
    粘滞阻尼器 1.362 34.5 3.60 45.8 14.96 23.5 4.720 25.4
    汶川波 3.09 12.98 3.977
    橡胶垫层 0.796 1.57 47.6 15.80 –21.7 5.022 –26.3
    LRB支座 1.08 65.5 4.63 64.3 1.511 62.0
    FPB支座 1.14 63.6 2.94 77.3 1.015 74.5
    HDR支座 2.27 27.5 4.17 67.9 1.375 65.4
    粘滞阻尼器 2.18 30.4 14.68 –13.1 4.645 –16.8
     注:“—”表示未发生碰撞;减幅为负值表示地震响应增大.
    下载: 导出CSV
  • 王东升,郭迅,孙治国,等. 汶川大地震公路桥梁震害初步调查[J]. 地震工程与工程振动,2009,29(3): 84-94.

    WANG Dongsheng, GUO Xun, SUN Zhiguo, et al. Damage to highway bridges during Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3): 84-94.
    LI J, PENG T, XU Y. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 7(4): 337-344. doi: 10.1007/s11803-008-1005-6
    杨孟刚,孟栋梁,戴良缘. 考虑轨道约束的高铁简支梁桥横向地震碰撞效应[J]. 中南大学学报(自然科学版),2018,49(4): 916-924.

    YANG Menggang, MENG Dongliang, DAI Liangyuan. Transverse seismic pounding effect for simply-supported girder bridges of high-speed railway considering track constraint[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 916-924.
    卫康华. 基于SAP2000的高铁简支梁桥横向地震碰撞效应及减隔震研究[D]. 长沙: 中南大学, 2017.
    李兰平,卜一之,贾宏宇, 等. 非平稳地震作用下高墩桥梁体间隙需求分析[J]. 西南交通大学学报,2019,54(1): 113-120.

    LI Lanping, BU Yizhi, JIA Hongyu, et al. Analysis of required separation distances of high-pier bridges subjected to non-stationary ground motions[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 113-120.
    李晰,贾宏宇,李倩,等. 碰撞对山区高墩桥弹塑性动力响应的影响[J]. 西南交通大学学报,2018,53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014

    LI Xi, JIA Hongyu, LI Qian, et al. Effect of pounding on elastic-plastic dynamic response of high pier bridge in mountainous area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014
    贾宏宇,杜修力,罗楠,等. 随机地震激励下高墩桥梁碰撞可靠度分析[J]. 西南交通大学学报,2018,53(1): 88-94. doi: 10.3969/j.issn.0258-2724.2018.01.011

    JIA Hongyu, DU Xiuli, LUO Nan, et al. Dynamic reliability analysis on pounding of high-pier bridges subjected to stochastic seismic excitations[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 88-94. doi: 10.3969/j.issn.0258-2724.2018.01.011
    GOEL R K, CHOPRA A K. Role of shear keys in seismic behavior of bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2008, 13(4): 398-408. doi: 10.1061/(ASCE)1084-0702(2008)13:4(398)
    邓育林,雷凡,何雄君. 地震作用下高墩桥梁横向碰撞效应研究[J]. 桥梁建设,2014,44(3): 25-31.

    DENG Yulin, LEI Fan, HE Xiongjun. Study of transverse pounding effect of high-rise pier rigid-frame bridges under action of earthquake[J]. Bridge Construction, 2014, 44(3): 25-31.
    LI J, XIANG N, TANG H, et al. Shake-table tests and numerical simulation of an innovative isolation system for highway bridges[J]. Soil Dynamics & Earthquake Engineering, 2016, 86: 55-70.
    BOZORGZADEH A, MEGALLY S, RESTREPO J I, et al. Capacity evaluation of exterior sacrificial shear keys of bridge abutments[J]. Journal of Bridge Engineering, 2006, 11(5): 555-565. doi: 10.1061/(ASCE)1084-0702(2006)11:5(555)
    HAN Q, ZHOU Y, OU Y, et al. Seismic behavior of reinforced concrete sacrificial exterior shear keys of highway bridges[J]. Engineering Structures, 2017, 139: 59-70. doi: 10.1016/j.engstruct.2017.02.034
    CHEN J, HAN Q, LIANG X, et al. Effect of pounding on nonlinear seismic response of skewed highway bridges[J]. Soil Dynamics & Earthquake Engineering, 2017, 103: 151-165.
    杨孟刚,潘增光,乔建东,等. 高速铁路列车制动力对简支梁桥地震碰撞效应影响研究[J]. 振动与冲击,2014,33(15): 167-173.

    YANG Menggang, PAN Zengguang, QIAO Jiandong, et al. Influence of train braking force on seismic pounding effect of a high-speed railway simply supported bridge[J]. Journal of Vibration and Shack, 2014, 33(15): 167-173.
    黄勇,王君杰,韩鹏,等. 考虑支座破坏的连续梁桥地震反应分析[J]. 土木工程学报,2010,43: 217-223.

    HUANG Yong, WANG Junjie, HAN Peng, et al. Seismic response analysis of continuous bridges tanking account of bearing failure[J]. China Civil Engineering Journal, 2010, 43: 217-223.
    KAZUHIKO K, GAKU S. Effect of restrainers to mitigate pounding between adjacent decks subjected to a strong ground motion[C]//12WCEE. New Zealand: [s.n.], 2000: 1435-1443.
    JANKOWSKI R, WILDE K, FUJINO Y. Reduction of pounding effects in elevated bridges during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(2): 195-212.
    陈令坤,蒋丽忠,王丽萍,等. 高速铁路铅芯橡胶支座桥梁隔震研究[J]. 华中科技大学学报(自然科学版),2012,40(1): 77-81.

    CHEN Lingkun, JIANG Lizhong, WANG Liping. Seismic isolation application to high-speed railway bridges with lead rubber bearings[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2012, 40(1): 77-81.
    American Association of State Highway and Transportation Officials. AASSHTO guide specifications for LRFD seismic bridge design[S]. Washington D. C.: AASHTO, 2009.
    中华人民共和国交通运输部. 公路桥梁高阻尼隔震橡胶支座: JT/T 842—2012[S]. 北京: 人民交通出版社, 2012.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  302
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-09-13
  • 网络出版日期:  2019-01-11
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回