Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于多特征检验的三维沥青路面裂缝检测

邱延峻 王国龙 阳恩慧 余孝丽 王郴平

邱延峻, 王国龙, 阳恩慧, 余孝丽, 王郴平. 基于多特征检验的三维沥青路面裂缝检测[J]. 西南交通大学学报, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
引用本文: 邱延峻, 王国龙, 阳恩慧, 余孝丽, 王郴平. 基于多特征检验的三维沥青路面裂缝检测[J]. 西南交通大学学报, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270
Citation: QIU Yanjun, WANG Guolong, YANG Enhui, YU Xiaoli, WANG Chenping. Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 518-524. doi: 10.3969/j.issn.0258-2724.20180270

基于多特征检验的三维沥青路面裂缝检测

doi: 10.3969/j.issn.0258-2724.20180270
基金项目: 国家自然科学基金(U1534203;51478398)
详细信息
    作者简介:

    邱延峻(1966—),男,教授,博士,研究方向为路基路面工程,E-mail:publicqiu@vip.163.com

  • 中图分类号: U416.2

Crack Detection of 3D Asphalt Pavement Based on Multi-feature Test

  • 摘要: 针对由裂缝对比度低、路面纹理复杂多变等因素引起的沥青路面三维图像的裂缝检测精度低的问题,对原始三维裂缝图像进行尺寸降维、灰度校正、高斯滤波等预处理;然后以图像截面为研究对象,分别对4个方向的截面依次进行特别设计的倾斜度、高斯分布、边缘梯度3种特征检验,从而获得裂缝截面;接着对各个方向的裂缝截面进行融合和去噪,获得完整的裂缝二值图像;最后,根据路面粗糙度的高低,变化高斯分布特征检验中的相关参数,实现裂缝的高精度检测. 研究结果表明:提出的算法能达到89.19%的准确率、93.69%的召回率及91.06%的 F 值,优于基于三维光影、种子识别的典型三维图像裂缝检测方法.

     

  • 铁路运输通过车轮与钢轨之间的黏着-蠕滑来传递牵引力,轮轨材料的磨损在此过程中不可避免. 反映轮轨黏着-蠕滑特性,描述黏着系数与蠕滑率关系的曲线即为轮轨蠕滑曲线. 理想条件蠕滑曲线可描述晴天时干燥的轮轨接触状态,但铁路系统开放的线路环境会不可避免地受到“第三介质”(如树叶、水、油脂等)的污染,改变轮轨蠕滑特性,影响轮轨动态相互作用和轮轨磨耗. 而轮轨磨耗导致的轮轨型面变化又会影响轮轨接触状态,改变轮轨动态相互作用,进而影响行车安全性、稳定性及旅客舒适性[1-2].

    准确高效的轮轨接触模型是研究轮轨动态相互作用和钢轨磨耗预测的关键要素. Kalker简化理论[3]、Shen-Hedrick-Elkins模型[4]、Polach模型[5]均已应用于车辆系统动力学仿真计算,但以上模型均假设黏着系数恒定,不考虑轮轨接触界面的粗糙度和污染等,预测的蠕滑曲线与实测蠕滑数据存在明显差异,主要表现为理想蠕滑曲线初始斜率大、不能模拟滑动区黏着系数达到饱和后随蠕滑率增大而下降的情况. 为克服理论模型的限制,学者们进行了有效改进:Polach[6]在其之前模型的基础上引入变摩擦系数和黏着区、滑动区刚度衰减因子,得到了与试验数据吻合较好的结果;Spiryagin等[7]将Polach模型中的变摩擦系数引入Kalker简化理论(数值程序FASTSIM算法),提出了修改的FASTSIM算法,该模型能够输出详细的轮轨滚动接触解;Vollebregt[8]在蠕滑曲线中考虑界面粗糙度和第三介质的影响,拓展了三维非赫兹滚动接触模型(数值程序CONTACT)的求解范畴.

    众多学者利用简化的轮轨接触模型进行数值仿真模拟,预测钢轨磨耗情况. 王璞等[9-12]基于Hertz理论与FASTSIM算法进行轮轨接触计算,预测钢轨磨耗深度. 此外,Hertz接触理论虽然计算速度快、效率高,但实际轮轨接触下很难满足其假设条件,故后续学者们为提高计算精度发展了轮轨非赫兹简化接触模型,例如:李浩等[13]采用Kik-Piotrowski模型预测动车所小半径曲线钢轨磨耗情况;Tao等[14-15]将Polach模型用于车辆系统动力学仿真,分析了牵引/制动和蠕滑控制对车轮磨耗的影响;TRAN等[16]采用Polach模型进行轮轨切向计算,研究了轮轨界面状态的变化对制动转矩的影响. 以上研究虽将Polach模型应用于车辆动力学仿真计算,但Polach仅给出了低速工况下的典型参数,适用于高速黏着工况下车辆动力学仿真的轮轨接触模型参数拟合研究还存在空白.

    本文利用国内实测蠕滑数据提出一种确定蠕滑曲线参数的方法,形成系统的前处理程序,并将实测蠕滑曲线拟合参数用于车辆系统动力学仿真和钢轨磨耗计算,研究了实测蠕滑曲线与理想条件蠕滑曲线的差异对钢轨磨耗的影响,对提高钢轨磨耗预测的准确性,指导现场进行养护维修工作具有重要意义.

    为研究实测轮轨蠕滑曲线对钢轨磨耗的影响,基于最小二乘法拟合实测蠕滑数据,给出适用于高速低黏着工况的轮轨接触模型拟合参数,并将Polach模型参数应用于车辆系统动力学仿真以模拟实测轮轨蠕滑曲线下的动力学结果,进一步将其用于钢轨磨耗预测,计算流程如图1所示.

    图  1  计算流程
    Figure  1.  Calculation flow chart

    钢轨磨耗计算的主要思路为:在车辆系统动力学计算中分别采用FASTSIM算法和Polach模型模拟理想条件蠕滑曲线和实测蠕滑曲线,将输出的动力学参数代入轮轨非赫兹滚动接触计算模型得到接触斑内的黏滑分布及切向应力大小;采用Kik-Piotrowski模型和修改的FASTSIM算法模拟实测蠕滑曲线,以计算接触斑内的磨耗深度分布,并对磨耗深度进行平滑处理. 当最大磨耗深度达到0.1 mm时,对钢轨型面进行更新,将更新后钢轨型面用于新一轮车辆系统动力学仿真和钢轨磨耗计算,反复迭代,直到满足迭代条件为止.

    运用Hertz理论[17]进行轮轨法向求解速度快,但实际条件很难完全满足Hertz接触理论的众多假设条件. Kalker三维滚动接触理论虽然计算精度高,但计算效率低,不适用于车辆系统动力学仿真计算. 为平衡计算效率与精度,采用轮轨非赫兹简化计算模型——Kik-Piotrowski模型[18](KP模型)进行轮轨法向求解,以计算钢轨磨耗.

    KP模型假设2个接触物体可以相互穿透,通过经验系数εε=0.55)与渗透量δ的乘积来确定虚拟渗透区域,其定义的纵向接触边界a(y)及接触斑内的压应力分布为

    a(y)2R(εδf(y)), (1)
    p(x,y)=p0a(y)a(0)1xa(y), (2)

    式中:f(y)为接触区域沿横向的纵向间隙,x为其横向位置,y为其纵向位置,R为接触点处的车轮滚动圆半径,p0为接触斑内的最大法向应力.

    1.2.1   FASTSIM算法

    FASTSIM算法是基于Kalker简化理论开发的[3],本文在车辆系统动力学仿真和钢轨磨耗计算中采用FASTSIM算法进行轮轨切向求解,以模拟理想条件蠕滑曲线. FASTSIM算法中的法向应力pz呈抛物面分布,如式(3).

    pz=2Qπab(1x2a2y2b2), (3)

    式中:Q为轮轨法向力,ab分别为接触斑的长、短半轴.

    FASTSIM算法将接触斑简化为椭圆,沿滚动方向将其划分为条带,每根条带划分为无数矩形单元. 每个单元沿x方向和y方向的长度分别为dx和dy. 假设靠近前端单元n的切向应力为¯pi,n,与其紧邻的接触后端单元n+1的切向应力如式(4),切向应力的合力如式(5).

    {¯px,n+1=px,n+(ξxLxyξφLφ)dx,¯py,n+1=py,n+(ξyLy+xξφLφ)dx, (4)
    ¯pt,n+1=¯p2x,n+1+¯p2y,n+1, (5)

    式中:ξ为蠕滑率,L为柔度系数,下标x、y、φ分别对应横向、纵向、自旋.

    单元(x,y)内的总切向应力应满足库伦摩擦定理. 若¯pt,n+1μspz,n+1μs为恒定的摩擦系数,则第n+1个单元属于黏着区,滑动量为0,pz,n+1为接触单元n+1内的法向应力;否则,第n+1个单元属于滑动区,滑动量大于0.

    1.2.2   Polach模型

    Polach在Kalker简化理论基础上考虑摩擦系数随蠕滑率的变化,提出一种快速计算蠕滑力的模型[6]. 该模型能够反映实测轮轨蠕滑曲线较小的初始斜率及黏着系数达到饱和后的负斜率特性. 列车直线工况下,将所得接触斑尺寸输入Polach模型拟合实测蠕滑数据,随后将拟合参数用于车辆系统动力学仿真计算.

    为模拟不同轮轨接触条件下的蠕滑曲线,Polach分别引入黏着区、滑动区切向刚度衰减因子kAkS计算轮轨蠕滑力F (式(6)),同时提出与蠕滑率相关的函数型摩擦系数μ (式(7)).

    F=2Qμπ[kAε11+(kAε1)2+arctan(kSε1)], (6)
    μ = μ0((1A)eBω+A), (7)

    式中:μ0为最大摩擦系数,A为蠕滑无穷大时对应的摩擦系数与最大摩擦系数的比值,B为摩擦力指数衰减系数,ω为总滑动速度的大小,ε1为剪切变形梯度.

    1.2.3   修改的FASTSIM算法

    Spiryagin等[7]将Polach模型与FASTSIM算法相结合,提出修改的FASTSIM算法,该方法不仅能够模拟实测蠕滑曲线,且能得到接触斑内的黏滑分布及应力大小. 采用KP模型对接触斑形状进行修正后,通过修改的FASTSIM算法拟合实测蠕滑数据,以计算实测轮轨蠕滑曲线下的钢轨磨耗.

    由于实测蠕滑曲线初始斜率小于Kalker的蠕滑曲线,该算法采用衰减因子k对斜率进行修正,如式(8).

    k=k0(α+1α1+βε1), (8)

    式中:k0为蠕滑率接近于0时Kalker衰减因子的初始值,αβ为反映刚度系数衰减的相关参数.

    为研究实测轮轨蠕滑曲线对钢轨磨耗的影响,利用全尺寸高速轮轨试验台测定40~400 km/h速度范围内的实测蠕滑数据[19],分别采用修改的FASTSIM算法和Polach模型拟合蠕滑曲线. 本文拟合得到40~400 km/h速度范围内Polach模型参数,将Polach模型拓展到全速度范围的车辆动力学仿真,并通过修改的FASTSIM算法计算接触斑内黏滑分布及应力大小,进行钢轨磨耗预测.

    修改的FASTSIM算法可以通过调整k0αβμ0AB 6个参数值模拟不同轮轨接触工况蠕滑曲线,其中k0αβ决定蠕滑曲线的初始斜率,μ0AB则决定摩擦系数的大小. 根据实测蠕滑数据建立函数型摩擦系数多元非线性回归模型,确定拟合参数μ0AB的初始值,将其代入修改的FASTSIM算法,确定蠕滑曲线的刚度衰减因子. αβ主要影响蠕滑曲线达到饱和时对应蠕滑率的大小;k0决定初始斜率与蠕滑曲线达到饱和时对应蠕滑率的大小. 由于βk0均会影响蠕滑曲线达到饱和时对应的蠕滑率,所以本文在现有修改的FASTSIM算法的基础上进行简化,将6个拟合参数减少为4个,令αβ均为0,仅通过调整k0确定蠕滑曲线的斜率,提高了计算效率,且计算精度能够满足需求. 参数初始值确定后,基于最小二乘法寻找理论拟合蠕滑曲线与实测数据均方根误差最小的解,确定拟合参数最优值,模型参数列于表1.

    表  1  修改的FASTSIM算法参数
    Table  1.  Modified FASTSIM algorithm parameters
    速度 V/(km·h−1 k0 μ0 A B
    40 0.85 0.340 0.46 27.00
    160 0.47 0.120 0.38 5.15
    200 0.39 0.075 0.31 4.40
    300 0.32 0.056 0.16 1.90
    400 0.27 0.050 0.16 1.70
    下载: 导出CSV 
    | 显示表格

    理论拟合蠕滑曲线与实测数据的误差衡量是由均方根误差RMSE决定的,如式(9).

    RMSE=1mmi=1(μtiμpi)2, (9)

    式中:μtiμpi)为蠕滑曲线中测量点i的实测(理论拟合)黏着系数.

    经过计算,40、160、200、300、400 km/h 5种速度工况对应的均方根误差分别为0.00720.00240.00150.00120.0013,误差值均较小,修改的FASTSIM算法能够较好地拟合实测蠕滑曲线,拟合效果如图2所示.

    图  2  修改的FASTSIM算法拟合实测轮轨蠕滑曲线
    Figure  2.  Measured wheel-rail creep curves fitted by modified FASTSIM algorithm

    Polach模型拟合轮轨蠕滑曲线的方法与修改的FASTSIM算法类似,此处不再赘述,Polach模型拟合各速度工况蠕滑曲线所得参数如表2所示.

    表  2  Polach模型参数表
    Table  2.  Polach model parameters
    V/(km·h−1 kA kS μ0 A B
    40 0.80 0.44 0.74 0.23 40.0
    160 0.50 0.14 0.32 0.16 7.8
    200 0.47 0.13 0.19 0.14 7.6
    300 0.37 0.11 0.13 0.12 4.0
    400 0.24 0.10 0.10 0.08 2.5
    下载: 导出CSV 
    | 显示表格

    利用多体动力学软件SIMPACK进行仿真计算,车辆模型包含1个车体、2个构架、4个轮对,轮对通过一系悬挂与构架相连接,构架则通过二系悬挂与车体相连接,弹簧、阻尼均通过力元模拟. 模型中将车体、构架、轮对均视为理想刚体,不考虑钢轨的弹性变形,每个刚体均考虑纵向、横移、沉浮、侧滚、点头和摇头6个自由度,整车模型为具有42个自由度的多刚体系统.

    轮轨切向接触模型分别采用FASTSIM算法和Polach模型,通过Polach模型模拟实测蠕滑曲线,FASTSIM算法模拟理想条件蠕滑曲线,其中FASTSIM中摩擦系数取开放环境干态工况下的典型值0.4,不同工况下轮轨蠕滑曲线的对比如图2所示. 仿真计算中车辆运行速度为300 km/h,线路参数为:曲线半径4500 m,外轨超高156 mm,直线、缓和曲线、圆曲线长度分别为100、600、600 m.

    采用USFD磨耗模型[20]进行钢轨磨耗分析计算,接触斑内的摩擦功为

    IW=qxξx+qyξy, (10)

    式中:qxqy分别为xy方向的切向应力.

    磨耗率KWIW(N/mm2)相关,计算公式为

    KW={5.3IW,IW<10.4,55.0,10.4IW77.2,55.0+61.9×(IW77.2),IW>77.2. (11)

    接触斑内每个网格的磨耗深度为

    δU(x,y)=KWρdx, (12)

    式中:密度ρ = 7850 kg/m3.

    接触斑内每个纵向条带上的磨耗进行叠加,即可得到某一钢轨截面的磨耗分布,如式(13).

    δtot(y)=a(y)a(y)δU(x,y)dx. (13)

    钢轨磨耗计算中,假定在车辆运行过程中车轮型面保持不变,车辆通过一次,钢轨某一截面的磨耗量需考虑4个轮对与钢轨接触产生磨耗量的叠加,本节对比了理想条件与实测蠕滑曲线、摩擦系数及磨耗率对圆曲线中点处钢轨磨耗的影响.

    图34分别为通过新轨和第5次廓形更新后钢轨截面的磨耗深度分布,外轨磨耗主要分布在轨头中部及轨肩区域,内轨磨耗则主要集中在轨顶区域.

    图  3  不同蠕滑曲线下通过新轨后钢轨磨耗深度分布
    Figure  3.  Rail wear depth distribution with vehicles passing new rail under different creep curves
    图  4  不同蠕滑曲线下第5次廓形更新后钢轨磨耗深度分布
    Figure  4.  Rail wear depth distribution after the fifth profile update under different creep curves

    图3可得:理想条件蠕滑曲线下,钢轨磨耗深度更大,实测蠕滑曲线下内外轨磨耗深度分别为理想条件结果的0.65倍和0.83倍;理想条件与实测蠕滑曲线下磨耗分布基本一致,且两者磨耗深度最大值所处位置基本相同;理想条件下,磨耗区域边缘处的磨耗深度明显大于实测蠕滑曲线,受超高、曲线半径等参数影响,外轨磨耗深度大于内轨磨耗深度. 由图4可知:随着钢轨廓形更新次数增加,钢轨磨耗分布范围变大,理想条件下内外轨磨耗分布范围分别为实测蠕滑曲线结果的1.5倍和1.3倍;理想条件蠕滑曲线下的钢轨磨耗深度仍更大,内外轨磨耗深度最大值分别为实测蠕滑曲线最大值的2.3倍和1.6倍;两者钢轨磨耗最大值所处位置基本相同,内外轨磨耗深度的最大值分别位于14.3 mm和0.5 mm左右;不同轮轨接触界面状态下的轮轨蠕滑曲线显著影响钢轨磨耗大小及分布,故磨耗计算时应考虑实测轮轨蠕滑曲线.

    图5对比了理想条件和实测蠕滑曲线对应新轨接触斑内的黏滑分布以及切向应力分布. 其中:红色线包围区域为滑移区,余下区域则为黏着区;箭头指向为各单元剪切应力的方向,其长度与剪切应力的大小成正比. 由图可得:理想条件蠕滑曲线下,接触斑面积及接触斑短轴更大,且接触斑形状存在明显差异;实测蠕滑曲线接触斑内滑动区面积明显大于理想条件结果,在300 km/h时,理想条件蠕滑曲线达到全滑动状态对应的蠕滑率大于实测蠕滑曲线达到全滑动状态对应的蠕滑率,且列车通过曲线时实测蠕滑曲线下蠕滑率更大. 由于磨耗深度的大小取决于接触斑内的切向应力和蠕滑率,而理想条件下接触斑内的切向应力水平明显大于实测蠕滑曲线对应值,进而导致其钢轨磨耗深度大于实测蠕滑曲线下磨耗深度.

    图  5  外轨侧接触斑黏滑分布及切向应力分布
    Figure  5.  Stick-slip distribution and tangential stress distribution of outer rail contact patch

    受天气、线路环境等因素影响,轮轨间的摩擦系数变化较大,而摩擦系数会影响轮轨切向接触计算,进而影响轮轨磨耗. 本小节将FASTSIM的摩擦系数分别设置为0.4(μ1)、0.2(μ2)、0.044(μ3),对比不同黏着水平对应摩擦系数对钢轨磨耗的影响,其中0.044为300 km/h实测蠕滑曲线黏着系数最大值.

    图67可得:外轨侧通过新轨后产生的钢轨磨耗深度随摩擦系数的增大而增大,内轨侧摩擦系数为0.044时磨耗深度略大于摩擦系数0.200对应数值;随着磨耗次数的增加,钢轨磨耗分布范围增大,摩擦系数越大,磨耗深度越大;外轨侧摩擦系数为0.200和0.400下磨耗深度差异较小,且不同摩擦系数下磨耗最大值分布位置基本一致,内轨侧摩擦系数为0.400、0.200、0.044时磨耗深度最大值分别为0.32、0.24、0.15 mm,且最大值所处位置差异明显,摩擦系数越小,磨耗最大值越靠近轨道中心线. 大多车辆系统动力学仿真假定摩擦系数为0.400,但低黏着环境下摩擦系数远小于0.400,会显著影响轮轨动态相互作用,进而影响轮轨磨耗预测值. 当现场试验条件受限无法获得轮轨蠕滑曲线时,应测得该轮轨界面状态有黏着下降时实测蠕滑数据中黏着系数最大值作为轮轨切向接触计算的摩擦系数,减小磨耗预测误差.

    图  6  不同摩擦系数下通过新轨后钢轨磨耗深度分布
    Figure  6.  Rail wear depth distribution with vehicles passing new rail under different friction coefficients
    图  7  不同摩擦系数下5次廓形更新后的钢轨磨耗深度分布
    Figure  7.  Rail wear depth distribution after the fifth profile update under different friction coefficients

    图8为不同摩擦系数下新轨接触斑内的黏滑分布及切向应力分布. 摩擦系数越大,切向应力越大,滑动区占整个接触斑的比例越小;摩擦系数为0.400、0.200及0.044时接触斑分别处于轻微蠕滑、中度蠕滑及几乎全滑动状态;摩擦系数越大,轮轨接触界面达到全滑动对应的蠕滑率越大,且其通过曲线时对应蠕滑率越小;不同摩擦系数下第一、三轮对外轨接触斑形状、大小基本一致,第二、四轮对外轨接触斑面积则随摩擦系数的减小而减小;由于磨耗深度大小受接触斑内切向应力和蠕滑率乘积的影响,摩擦系数越大,接触斑内切向应力越大,进而导致钢轨磨耗也越大.

    图  8  外轨侧接触斑黏滑分布及切向应力分布
    Figure  8.  Stick-slip distribution and tangential stress distribution of outer rail contact patch

    USFD磨耗计算模型是Braghin等[20]在理想干燥环境下基于1∶1模型试验提出的,而实际的轮轨接触中常与试验条件存在差异,所以采用USFD模型进行磨耗计算时不可避免地会产生误差. 本小节将试验测得的钢轨磨耗率[21]用于磨耗计算,对比了300 km/h实测蠕滑曲线下磨耗率对钢轨磨耗计算的影响.

    图9可得:采用理想干态磨耗率计算的钢轨磨耗深度及分布范围明显小于实测磨耗率结果,且其磨耗分布变化更为均匀;内、外轨采用实测磨耗率所得磨耗分布范围分别为理想干态磨耗率结果的1.4倍和1.1倍,实测和理想干态磨耗率下外轨磨耗深度最大值分别为0.38 mm和0.20 mm,两者对应内轨磨耗最大值分别为0.36 mm和0.24 mm,且最大值所处位置不同. 这主要是由于2种磨耗率确定方式不同,导致在新轨上计算的磨耗产生差异,进而造成磨耗后钢轨廓形的差异,影响轮轨接触状态和轮轨动态相互作用,并进一步反映在后续的钢轨磨耗计算中. 因此,不同轮轨接触界面状态会影响磨耗率大小,影响钢轨磨耗大小及分布. 另外,试验工况对应的水量、磨耗碎屑等因素与轮轨蠕滑曲线的测量环境存在差异,轮轨接触界面状态不完全相同,磨耗率仍会存在一定差异.

    图  9  不同磨耗率下5次廓形更新后的钢轨磨耗深度分布
    Figure  9.  Rail wear depth distribution after the fifth profile update under different wear rates

    受天气、线路环境等因素影响,轮轨接触界面状态变化较大,导致轮轨蠕滑曲线存在差异. 为研究实测轮轨蠕滑曲线对钢轨磨耗计算的影响,本文通过Polach模型在车辆系统动力学仿真中考虑实测轮轨蠕滑曲线,采用Kik-Piotrowski模型和修改的FASTSIM算法进行轮轨非赫兹滚动接触计算,并结合USFD磨耗模型预测钢轨磨耗深度,系统对比了理想条件与实测蠕滑曲线下钢轨磨耗的差异. 研究表明:

    1) 理想条件蠕滑曲线下,钢轨磨耗深度及磨耗分布范围大于实测蠕滑曲线对应结果,理想条件下内、外轨磨耗最大值分别为实测蠕滑曲线的2.3倍和1.6倍,磨耗分布范围分别为其1.5倍和1.3倍. 轮轨蠕滑曲线明显影响钢轨磨耗计算结果,故进行钢轨磨耗预测时需考虑不同线路环境下的实测轮轨蠕滑曲线.

    2) 钢轨磨耗深度随摩擦系数的增大而增大,随着车辆通过次数增加,钢轨磨耗分布范围增大. 低黏着工况钢轨磨耗大小及分布位置明显区别于摩擦系数0.4对应结果,故试验条件受限时,应测得该环境下有黏着下降的实测蠕滑数据黏着系数最大值作为轮轨接触计算的摩擦系数,增加磨耗预测的可靠度.

    3) 采用理想干态磨耗率计算的钢轨磨耗深度及分布范围明显小于实测磨耗率计算结果,且其磨耗分布变化更为均匀.

  • 图 1  三维裂缝图像断面预处理实例

    Figure 1.  Illustration of a preprocessed profile in 3D asphalt pavement images

    图 2  预处理后三维裂缝图像主要截面

    Figure 2.  Main profiles of preprocessed 3D crack pavement images

    图 3  裂缝检测实例

    Figure 3.  Illustration of crack detection using proposed algorithm

    图 4  低粗糙度沥青路面裂缝检测结果对比

    Figure 4.  Comparison of crack detection using low textured asphalt pavement images

    表  1  不同算法检测结果对比

    Table  1.   Comparison of crack detection using different methods %

    类型图像编号算法 A算法 B本文算法
    准确率召回率F准确率召回率F准确率召回率F
    低粗糙
    度路面
    1~60 87.00 95.36 90.17 99.49 79.91 87.98 94.46 96.00 95.13
    61~120 86.04 93.75 88.96 98.97 78.13 86.93 91.28 95.42 93.16
    121~180 88.05 93.80 90.27 90.74 93.78 92.08 89.82 95.19 92.25
    1~180 87.03 94.30 89.80 96.40 83.94 89.00 91.85 95.54 93.51
    高粗糙
    度路面
    181~240 54.34 94.65 66.90 93.42 88.63 90.68 89.61 92.30 90.68
    241~300 48.59 94.97 62.33 93.06 88.06 90.37 87.98 91.20 89.27
    301~360 55.68 90.48 65.86 90.42 71.62 78.71 81.97 92.00 85.88
    181~360 52.87 93.37 65.03 92.30 82.77 86.59 86.52 91.83 88.61
    汇总 1~360 69.95 93.84 77.42 94.35 83.36 87.80 89.19 93.69 91.06
    下载: 导出CSV

    表  2  低粗糙程度沥青路面裂缝检测结果对比

    Table  2.   Comparison of crack detection using low textured asphalt pavement images

    原始图象人工批注算法 A算法 B本文算法
    下载: 导出CSV

    表  3  高粗糙程度沥青路面裂缝检测结果对比

    Table  3.   Comparison of crack detection using high textured asphalt pavement images

    原始图象人工批注算法 A算法 B本文算法
    下载: 导出CSV
  • WANG K C P. Design and implementations of automated systems for pavement surface distress survey[J]. Journal of Infrastructure Systems, 2000, 6(1): 24-32. doi: 10.1061/(ASCE)1076-0342(2000)6:1(24)
    FUKUHARA T, TERADA K, NAGAO M, et al. Automatic pavement-distress-survey system[J]. Journal of Transportation Engineering, 1990, 116(3): 280-286. doi: 10.1061/(ASCE)0733-947X(1990)116:3(280)
    ZHANG P, LI H. Recognition of pavement surface crack[C]//Sixth International Conference on Natural Computation. Yantai: IEEE, 2010: 3393-3396.
    AYENU-PRAH A, ATTOH-OKINE N. Evaluating pavement cracks with bidimensional empirical mode decomposition[J]. Eurasip Journal on Advances in Signal Processing, 2008, 2008(1): 861701.1-861701.7
    NGUYEN T S, AVILA M, BEGOT S. Automatic detection and classification of defect on road pavement using anisotropy measure[C]//Signal Processing Conference. Glasgow: IEEE, 2009: 617-621.
    彭博,WANG K C P,陈成,等. 基于各向异性测度的路面三维图像裂缝识别[J]. 西南交通大学学报,2014,49(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023

    PENG Bo, WANG K C P, CHEN Cheng, et al. 3D pavement crack image detection based on anisotropy measure[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 888-895. doi: 10.3969/j.issn.0258-2724.2014.05.023
    CHENG H D, SHI X J, GLAZIER C. Real-time image thresholding based on sample space reduction and interpolation approach[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 264-272. doi: 10.1061/(ASCE)0887-3801(2003)17:4(264)
    王世芳,车艳丽,李楠,等. 一种基于多尺度脊边缘的沥青路面裂缝检测算法[J]. 中国公路学报,2017,30(4): 32-41. doi: 10.3969/j.issn.1001-7372.2017.04.005

    WANG Shifang, CHE Yanli, LI Nan, et al. Asphalt pavement crack detection algorithm based on multi-scale ridges[J]. China Journal of Highway and Transport, 2017, 30(4): 32-41. doi: 10.3969/j.issn.1001-7372.2017.04.005
    ZOU Qin, CAO Yu, LI Qingquan, et al. CrackTree:automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. doi: 10.1016/j.patrec.2011.11.004
    WANG K C P. Elements of automated survey of pavements and a 3D methodology[J]. Journal of Modern Transportation, 2011, 19(1): 51-57. doi: 10.1007/BF03325740
    TSAI Y C J, LI F. Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3D laser technology[J]. Journal of Transportation Engineering, 2012, 138(5): 649-656. doi: 10.1061/(ASCE)TE.1943-5436.0000353
    OUYANG W, XU B. Pavement cracking measurements using 3D laser-scan images[J]. Measurement Science & Technology, 2013, 24(10): 105204.1-105204.9.
    SOLLAZZO G, WANG K C P, BOSURGI G, et al. Hybrid procedure for automated detection of cracking with 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016032.1-04016032.12. doi: 10.1061/(ASCE)CP.1943-5487.0000597
    JIANG C, TSAI Y J. Enhanced crack segmentation algorithm using 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(3): 04015050.1-04015050.10. doi: 10.1061/(ASCE)CP.1943-5487.0000526
    ZHANG A, WANG K C P, LI B, et al. Automated pixel-level pavement crack detection on 3D asphalt sur-faces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. doi: 10.1111/mice.12297
    彭博. 基于路面高精三维图像的裂缝自动识别与分类算法[D]. 成都: 西南交通大学, 2014.
    FUJITA Y, HAMAMOTO Y. A robust automatic crack detection method from noisy concrete surfaces[J]. Machine Vision and Applications, 2011, 22(2): 245-254. doi: 10.1007/s00138-009-0244-5
    SHAPIRO S, WILK M B. An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52: 591-611. doi: 10.1093/biomet/52.3-4.591
    GUPTA S D, PATTANAYAK A K. Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato[J]. In Vitro Cellular & Developmental Biology−Plant, 2017(14): 1-7.
    彭博,WANG K C P,陈成,等. 基于1 mm精度路面三维图像的裂缝种子自动识别算法[J]. 中国公路学报,2014,27(12): 23-32. doi: 10.3969/j.issn.1001-7372.2014.12.004

    PENG Bo, WANG K C P, CHEN Cheng, et al. Automatic recognition for crack seeds based on 1 mm resolution 3D pavement images[J]. China Journal of Highway and Transport, 2014, 27(12): 23-32. doi: 10.3969/j.issn.1001-7372.2014.12.004
    ZHNAG A, WANG K C P, AI C. 3D shadow modeling for detection of descended patterns on 3D pavement surface[J]. Journal of Computing in Civil Engineering, 2017, 31(4): 04017019.1-04017019.13. doi: 10.1061/(ASCE)CP.1943-5487.0000661
  • 期刊类型引用(0)

    其他类型引用(2)

  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  877
  • HTML全文浏览量:  381
  • PDF下载量:  50
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-12-28
  • 网络出版日期:  2018-01-04
  • 刊出日期:  2020-06-01

目录

/

返回文章
返回