• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

锂离子电池温升特性分析及液冷结构设计

盘朝奉 刘兵 陈龙 何志刚 韩超

盘朝奉, 刘兵, 陈龙, 何志刚, 韩超. 锂离子电池温升特性分析及液冷结构设计[J]. 西南交通大学学报, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241
引用本文: 盘朝奉, 刘兵, 陈龙, 何志刚, 韩超. 锂离子电池温升特性分析及液冷结构设计[J]. 西南交通大学学报, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241
PAN Chaofeng, LIU Bing, CHEN Long, HE Zhigang, HAN Chao. Temperature Rise Characteristic Analysis and Liquid Cooling Structure Design of Lithium Battery[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241
Citation: PAN Chaofeng, LIU Bing, CHEN Long, HE Zhigang, HAN Chao. Temperature Rise Characteristic Analysis and Liquid Cooling Structure Design of Lithium Battery[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 68-75. doi: 10.3969/j.issn.0258-2724.20180241

锂离子电池温升特性分析及液冷结构设计

doi: 10.3969/j.issn.0258-2724.20180241
基金项目: 国家自然科学基金(51707084,51475213);江苏省自然科学基金(BK20171300,BK20160529);江苏省重点研发计划项目(BE2017096)
详细信息
    作者简介:

    盘朝奉(1979—),男,博士,教授,研究方向为电动汽车系统技术集成与应用、电动汽车动力电池热管理技术,E-mail:chfpan@ujs.edu.cn

  • 中图分类号: U469.72

Temperature Rise Characteristic Analysis and Liquid Cooling Structure Design of Lithium Battery

  • 摘要: 针对电动汽车动力电池的温升发热导致温度分布不均及过热现象,根据电池的热物性参数及不同环境温度下的内阻,建立电池包生热分析模型;测试采集并拟合电动汽车的母线电流,通过仿真分析得到不同车速下电动汽车电池包的温升情况;进行典型城市工况实车试验,测取不同车速下电池包内温度测点的温升数据并拟合成温升曲线,通过仿真与试验结果对比,验证所建立的热分析模型的准确性;在此基础上,设计双进双出的液冷散热管道结构方案,分析在1C放电倍率下该液冷散热方案的散热效果. 研究结果表明:锂电池在高温(50 ℃)下,内阻仅为13.9 mΩ,而在低温(−30 ℃)时,内阻却达到了21.5 mΩ;电动汽车在新欧洲行驶工况(NEDC工况)和匀速工况(40、50、60、70 km/h)下的最高温升分别为1.8、2.6、3.6、5.3、8.0 ℃;所设计的U型结构液冷管道可以有效地降低电池包温升,提高电池包的温度均匀度.

     

  • 图 1  温度-内阻拟合曲线

    Figure 1.  Fitting curve of temperature-internal resistance

    图 2  电池包安装位置和电池模组网格

    Figure 2.  Install position of battery and module grid

    不同车速下瞬时电流拟合曲线

    Instantaneous current at different speeds

    图 3  NEDC瞬时电流曲线

    Figure 3.  Instantaneous current at NEDC

    图 5  NEDC工况温升云图

    Figure 5.  Nephogram of temperature rise at NEDC

    图 6  40 km/h匀速行驶温升云图

    Figure 6.  Nephogram of temperature rise at 40 km/h

    图 7  匀速行驶模组温升云图(z = 65 mm)

    Figure 7.  Temperature rise of module at constant speed of 50 km/h and 60 km/h (z = 65 mm)

    图 8  70 km/h匀速行驶温升云图

    Figure 8.  Nephogram of temperature rise at constant speed of 70 km/h

    图 9  温度传感器位置

    Figure 9.  Locations of temperature sensors

    试验与仿真温升对比(NEDC与匀速行驶)

    Temperature rise comparison of experiment and simulation (NEDC and constant speed)

    图 11  电池包内部模组及管道网格

    Figure 11.  Grids of internal module and pipeline in battery

    图 12  模组温升云图(未采用和采用液冷散热)

    Figure 12.  Temperature rise nephogram of module (unused and used liquid cooling pipe)

    图 13  两种方式电池包内平均温度对比

    Figure 13.  Comparison of average temperature in cooled and uncooled batteries

    表  1  电池PACK各组件具体参数

    Table  1.   Specific parameters of each component of battery PACK

    材料导热系数/
    (W•(m•K)−1
    比热容/
    (J•(kg•K)−1
    密度/
    (kg•m−3
    电池 1.24/1.24/0.62 840 2 260
    空气 0.024 2 1 026 1.23
    电池箱 16.27 503 8 025
    下载: 导出CSV
  • 刘振军,林国发,秦大同,等. 电动汽车锂电池组温度研究及其结构优化[J]. 汽车工程,2012,34(1): 80-84. doi: 10.3969/j.issn.1000-680X.2012.01.018

    LIU Zhenjun, LIN Guofa, QIN Datong, et al. A study on the temperature field of lithium-ion battery pack in an electric vehicle and its structural optimization[J]. Automotive Engineering, 2012, 34(1): 80-84. doi: 10.3969/j.issn.1000-680X.2012.01.018
    JARRETT A, KIM Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196(23): 10359-10368. doi: 10.1016/j.jpowsour.2011.06.090
    MIN J K, LEE C H. Numerical study on thermal management system of a molten sodium sulfur battery module[J]. Journal of Power Sources, 2012, 210: 101-109. doi: 10.1016/j.jpowsour.2012.03.028
    李哲,韩雪冰,卢兰光,等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报,2011,47(18): 115-120.

    LI Zhe, HAN Xuebing, LU Languang, et al. Temperature characteristics of power LiFePO4 batteries[J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120.
    李仲兴,李颖,周孔亢,等. 纯电动汽车不同行驶工况下电池组的温升研究[J]. 机械工程学报,2014,50(16): 180-185.

    LI Zhongxing, LI Yin, ZHOU Kongkang, et al. Temperature study of pure electric vehicles battery pack at different driving conditions[J]. Journal of Mechanical Engineering, 2014, 50(16): 180-185.
    俆晓明,赵又群. 不同工况下电池冷板液冷系统散热性能试验研究[J]. 汽车工程,2014(9): 1057-1062.

    XU Xiaoming, ZHAO Youqun. An experimental study on the heat dissipation performance of cooling-plate liquid cooling system for electric vehicle in different conditions[J]. Automotive Engineering, 2014(9): 1057-1062.
    张志杰,李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术,2010,34(2): 128-130. doi: 10.3969/j.issn.1002-087X.2010.02.011

    ZHANG Zhijie, LI Maode, et al. Effect of internal resistance on temperatre rising of lithium-ion battery[J]. Journal of Power Sources, 2010, 34(2): 128-130. doi: 10.3969/j.issn.1002-087X.2010.02.011
    FORGEZ C, DO D V, et al. Thermal modeling of a cylindrical LiFePO 4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968. doi: 10.1016/j.jpowsour.2009.10.105
    YE Y, SHI Y, CAI N, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199(1): 227-238.
    HANAI Y, YOSHIMURA K, MATSUKI J, et al. A basic study of a coordinated control method for heat pump water heaters and electric vehicle battery chargers in residence with pv systems[J]. Transactions of the Korean Institute of Power Electronics, 2014, 1(1): 97-103.
    张庭芳,郭伟春,付艳恕. 车载动力电池组温升特性仿真及实验研究[J]. 电源技术,2015,39(1): 43-46. doi: 10.3969/j.issn.1002-087X.2015.01.012

    ZHANG Tingfang, GUO Weichun, FU Yanshu. Research on temperature characteristics simulation and of lithium-ion battery pack for electric vehicle[J]. Chinese Journal of Power, 2015, 39(1): 43-46. doi: 10.3969/j.issn.1002-087X.2015.01.012
    ZOU Huiming, WANG Wei, ZHANG Guiying, et al. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle[J]. Energy Conversion and Management, 2016, 118: 88-95. doi: 10.1016/j.enconman.2016.03.066
    CHO G Y, CHOI J W, PARK J H, et al. Transient modeling and validation of lithium ion battery pack with air cooled themal management system for electric vehicles[J]. International Journal of Automotive Technology, 2014, 15(5): 795-803. doi: 10.1007/s12239-014-0083-x
    LIU H, LIU W. Thermal-structuralanalysis theplatelet heat-pipe-cooled leading edge of hypersonicvehicle[J]. Acta Astronautica, 2016, 127: 13-19. doi: 10.1016/j.actaastro.2016.05.014
    罗玉涛,何小颤. 动力锂离子电池热安全性影响因素的研究[J]. 汽车工程,2012,34(4): 333-338. doi: 10.3969/j.issn.1000-680X.2012.04.012

    LUO Yutao, HE Xiaochan. Research on temperature characteristics simulation and of lithium-ion battery pack for electric vehicle[J]. Automotive Engineering, 2012, 34(4): 333-338. doi: 10.3969/j.issn.1000-680X.2012.04.012
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  237
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-07
  • 修回日期:  2019-02-25
  • 网络出版日期:  2019-04-04
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回