• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

真空管道运输系统发展现状及展望

邓自刚 张勇 王博 张卫华

邓自刚, 张勇, 王博, 张卫华. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
引用本文: 邓自刚, 张勇, 王博, 张卫华. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
DENG Zigang, ZHANG Yong, WANG Bo, ZHANG Weihua. Present Situation and Prospect of Evacuated Tube Transportation System[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
Citation: DENG Zigang, ZHANG Yong, WANG Bo, ZHANG Weihua. Present Situation and Prospect of Evacuated Tube Transportation System[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204

真空管道运输系统发展现状及展望

doi: 10.3969/j.issn.0258-2724.20180204
基金项目: 国家自然科学基金资助项目(51875485);四川省青年科技基金资助项目(2016JQ0039)
详细信息
    作者简介:

    邓自刚(1982—),男,研究员,博士,研究方向为高温超导磁悬浮及真空管道磁浮交通,E-mail:deng@swjtu.cn

  • 中图分类号: U237

Present Situation and Prospect of Evacuated Tube Transportation System

  • 摘要: 作为一种新型交通系统,真空管道运输系统将悬浮列车技术和低气压管道技术相结合,理论上能够最大限度地减小列车高速运行时的摩擦阻力和气动阻力.为了促进真空管道运输系统的发展,从基本原理角度,系统论述了真空管道运输系统的可行性及车辆、管道、驱动装置等子系统关键构成,指出了其快速、便捷、安全、环保和高效等优势;介绍了国内外真空管道运输系统的研究现状,包括美国ET3、美国Hyperloop、瑞士超高速地铁Swissmetro,以及西南交通大学真空管道高温超导磁悬浮车试验平台,比较分析了各单位在车辆、管道、驱动装置及造价等方面的技术特点和优势;展望了当前发展真空管道运输系统亟需解决的关键问题,并指出车轨作用、高速直线牵引、气动和散热、管道密封以及管道内通信、救援这几个方面是今后需要重点研究的领域.

     

  • 图 1  上海常导磁悬浮列车

    Figure 1.  EMS train in Shanghai

    图 2  日本低温超导EDS列车

    Figure 2.  Low-temperature superconducting electrodynamic suspension train in Japan

    图 3  中国高温超导磁悬浮列车“世纪号”

    Figure 3.  High temperature superconducting maglev vehicle“Century”in China

    图 4  气动悬浮车效果

    Figure 4.  Schematic of aerodynamic levitation vehicle

    图 5  ET3公司设计效果

    Figure 5.  Schematic designed by ET3 company

    图 6  Swissmetro列车设计图

    Figure 6.  Swissmetro trains design scheme

    图 7  Hyperloop one公司车辆

    Figure 7.  Vehicle designed by Hyperloop one company

    图 8  真空管道高温超导磁悬浮车实验平台Super-Maglev

    Figure 8.  Experimental facility named Super-Maglev for evacuated tube transport with high temperature superconducting maglev vehicle

    表  1  几种悬浮技术的对比

    Table  1.   Comparison of several suspension technologies

    项目悬浮技术
    常导磁悬浮低温超导磁悬浮高温超导磁悬浮气动悬浮
    路轨要求较高极高
    控制系统复杂较复杂简单难以控制
    悬浮状态须耗能低速需轮轨静止悬浮依靠气膜悬浮
    悬浮高度/mm810010~300.5~1.3
    成本
    下载: 导出CSV

    表  2  各种运输系统能耗及成本对比

    Table  2.   Comparison of consumption and cost among several transport systems

    指标运输系统
    水路公路铁路民航
    单位能耗/(×103 kg•t−1•km−196410434
    单位成本/(×103 元•t−1•km−119219222 800
    下载: 导出CSV

    表  3  ET3、Swissmetro和Hyperloop系统参数对照

    Table  3.   Parameters comparison among ET3,Swissmetro and Hyperloop system

    系统车辆管道其它规划
    悬浮类型形状尺寸/m车重/t承载人数/位结构位置材料气压/kPa驱动装置供电装置经费试验线路及线路长度/km最高时速/(km•h−1
    ET3磁悬浮胶囊小车直径1.30,长4.80183×10−36双向10.13直线电机供电网和蓄电池140万美元/km,2.8万美元/辆纽约—好莱坞,
    4 600
    6 500
    Swissmetro电磁悬浮列车直径3.50,长200.00100800双向并行地下隧道钢筋混凝土管片10.13直线电机供电网和蓄电池50亿瑞士法郎日内瓦—洛桑,63500
    Hyperloop气动悬浮Hyperloop宽1.35,高1.101528双向并行高架桥金属0.10电动空气压缩机太阳能和蓄电池60亿美元加州5号公路沿线,81 220
    下载: 导出CSV

    表  4  Super-Maglev具体参数

    Table  4.   Super-Maglev parameters

    管道直径/m长度/m气压
    /kPa
    实验速度/(km•h−1牵引制动
    2.045.0,环形;弯道半径6.0,直线段长度3.6101.0~
    10.1
    0~50直线感应电机配合机械混合制动
    下载: 导出CSV
  • GODDARD H R. Apparatus for vacuum tube transportation: U S, 2488287[P]. 1945-10-06.
    GODDARD H R. Vacuum tube transportation system: U S, 2511979[P]. 1950-06-20.
    KEMPER H. The invention of a hovertrack with wheelless vehicles which hover along iron rails using magnetic fields: Germany, DE1934K130005D[P]. 1934-08-11.
    郝瀛. 中国铁路建设概论[M]. 北京: 中国铁道出版社, 1998: 294-295.
    MOSSI M, ROSSEL P. Swissmetro: a revolution in the high-speed passenger transport systems[C]//1st Swiss Transport Research Conference. Ascona: IEEE, 2001: 1-16.
    SOLTER M R. Trans-planetary subway systems: a burgeoning capability[R/OL]. Rand Organization, 1978 [2018-4-13]. https://www.rand.org/content/dam/rand/pubs/papers/2009/P6092.pdf.
    OSTER D, FLA R C. Evacuated tube transportation: U S, 5950543[P]. 1999-09-14.
    MUSK E. Hyperloop alpha[EB/OL]. 2013[2018-4-13]. http://www.spacex.com/sites/spacex/files/hyperloop_alpha.pdf.
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报,2005,40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Zhiyun. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    SCHETZ A J. 高速列车空气动力学[J]. 力学进展, 2003, 33(3): 404-423.
    沈志云. 高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J]. 交通运输工程学报,2001,1(1): 1-6. doi: 10.3321/j.issn:1671-1637.2001.01.001

    SHEN Zhiyun. Dynamic interaction of high speed maglev train on girders and its comparison with the case in ordinary high speed railways[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 1-6. doi: 10.3321/j.issn:1671-1637.2001.01.001
    吴祥明. 磁浮列车[M]. 上海: 上海科学技术出版社, 2003: 96-97.
    MOTOHARU O, SHUNSAKU K, HISAO O. Japan’s superconducting maglev train[J]. IEEE Instrumentation & Measurement Magazine, 2002, 5(1): 9-15.
    王家素, 王素玉. 超导技术应用[M]. 成都: 成都科技大学出版社, 1995: 145-152.
    WANG Jiasu, WANG Suyu, ZENG Youwen, et al. The first man-loading high temperature superconducting maglev test vehicle in the world[J]. Physica C, 2002, 378/379/380/381: 809-814.
    SCHULTZ L, HAAS O, VERGES P, et al. Superconductively levitated transport system-the supratrans project[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2301-2305. doi: 10.1109/TASC.2005.849636
    SOTELO G G, OLIVEIRA R A H, COSTA F S, et al. A full scale superconducting magnetic levitation (maglev) vehicle operational line[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1-5.
    KOVALEV K L, KONEEV S M A, POLTAVEC V N, et al. Magnetically levitated high-speed carriages on the basis of bulk HTS elements[C]//Proceeding of the 19th International Symposium on Magnetic Suspension Technology. Dresden: [s. n.], 2005: 51.
    D ’OVIDIO G, CRISI F, LANZARA G. A " V” shaped superconducting levitation module for lift and guidance of a magnetic transportation system[J]. Physica C, 2008, 468(14): 1036-1040. doi: 10.1016/j.physc.2008.05.154
    杨学实. 气悬浮列车研究的新进展[J]. 交通运输系统工程与信息,2003,3(3): 66-70. doi: 10.3969/j.issn.1009-6744.2003.03.014

    YANG Xueshi. New developments in research of air suspension trains[J]. Communication and Transportation Systems Engineering and Information, 2003, 3(3): 66-70. doi: 10.3969/j.issn.1009-6744.2003.03.014
    王家素,王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报,2015,10(11): 2-12.

    WANG Jiasu, WANG Suyu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 2-12.
    张耀平,梅绍祖,曾学贵. ETT——引领21世纪的高速运输[J]. 世界科技研究与发展,2002,24(2): 60-64. doi: 10.3969/j.issn.1006-6055.2002.02.009

    ZHANG Yaoping, MEI Shaozu, ZENG Xuegui. ETT—lead the high-speed transportation of the 21st century[J]. World Sci-Tech R & D, 2002, 24(2): 60-64. doi: 10.3969/j.issn.1006-6055.2002.02.009
    严作人. 运输经济学[M]. 北京: 人民交通出版社, 2009: 33-38.
    董焰. 我国综合交通运输的效率、效益及管理体制问题[C]//中国工程院第32场工程科技论坛——中国综合交通运输发展战略. [出版地不详]: 中国工程院, 2004: 15-32.
    OSTER D, KUMADA M, ZHANG Y. Evacuated tube transport technologies (ET3) tm;a maximum value global transportation network for passengers and cargo[J]. Journal of Modern Transportation, 2011, 19(1): 42-50. doi: 10.1007/BF03325739
    张瑞华等. 一种新的高速磁悬浮列车——瑞士真空管道高速磁悬浮列车方案[J]. 变流技术与电力牵引,2004(1): 44-46.

    ZHANG Ruihua, et al. A new high-speed maglev train-the swiss vacuum tube high-speed maglev train project[J]. High Power Converter Technology, 2004(1): 44-46.
    CASSAT A, ESPANET C. Swissmetro: combined propulsion with levitation and guidance[C]//Proceedings of Maglev. Shanghai: [s. n.], 2004: 747-758.
    刘本林, 赵勇. 速车系统概论[M]. 成都: 西南交通大学出版社, 2009: 16-26.
    ZHOU Dajin, CUI Chenyu, ZHAO Lifeng, et al. Running stability of prototype vehicle in side-suspended HTS maglev circular test track system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(1): 3600107.
    DENG Zigang, ZHANG Weihua, ZHENG Jun, et al. A high temperature superconducting maglev ring test line developed in Chengdu,China[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 3602408.
    DENG Zigang, ZHANG Weihua, ZHENG Jun, et al. A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(6): 3602008.
    王博. 真空管道高温超导磁悬浮车气动特性研究[D]. 成都: 西南交通大学, 2017.
    刘加利,张继业,张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报,2013,49(22): 137-143.

    LIU Jiali, ZHANG Jiye, ZHANG Weihua. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137-143.
    贾文广. 真空管道交通系统热动力学特性研究[D]. 青岛: 青岛科技大学, 2013.
    LIU Lu, WANG Jiasu, WANG Suyu, et al. Levitation force transition of high-Tc superconducting bulks within a maglev vehicle system under different dynamic operation[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1547-1550. doi: 10.1109/TASC.2010.2091099
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  299
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-08-10
  • 网络出版日期:  2018-09-14
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回