Numerical Simulation of Direct-Current Sand Leakage Wind Tunnel Based on FLUENT
-
摘要: 目前的风沙风洞大多适用于风沙地貌、风沙环境的研究以及防护治理,而用于结构风工程的风沙风洞很少,因为其需要在一定高度处能够实现风速和风沙浓度可调的均匀稳定段.为了研究直流漏沙式风沙风洞中风沙流的分布规律,运用FLUENT建立风洞模型,通过对已有的漏沙风洞试验进行数值模拟,验证了模型的正确性.进一步基于风洞风速、漏沙体积分数、漏沙速度等参数对风洞风沙流的影响规律,提出了一种新型的水平多口风洞漏沙装置.对该风沙风洞的分析表明:在试验模拟浓度的范围内,风洞风速越大,同一位置的沙粒分布高度越高;漏沙体积分数和漏沙速度主要影响单位时间内进入风洞的沙粒质量,且试验位置沙粒浓度的峰值与单位时间进入风洞的沙粒质量成正比;该风沙风洞可以得到约1/2风洞高度的沙粒浓度均匀试验段,并可以通过调节漏沙体积分数、漏沙速度和试验位置可得到试验所需的试验风速及对应的沙粒浓度,使其能很好地完成风工程中的风沙定量试验.Abstract: Currently wind-sand tunnels are mainly used for research, protection and management of wind-sand landscape and wind-sand environment, and rarely adopted in structural wind engineering because the stable sections with adjustable wind speeds and wind-sand concentrations at a certain height are difficult to achieve. In order to study the distribution of wind-sand two-phase flow field in the direct-current sand leakage wind tunnel, in this work a wind tunnel model was built using the commercial software FLUENT, and then verified by simulating the existing sand leakage wind tunnel test. Based on the influence of wind speed, sand leakage volume fraction, sand leakage speed, and other parameters on wind-sand flow in the wind tunnel, a new type of sand leakage device for horizontal multi-port wind tunnel was further proposed. Simulation results of the wind-sand tunnel show that the distribution height of sand particles in the same location is higher at a larger wind speed. The quality of the sand particles entering the wind tunnel in unit time is mainly affected by volume fraction and velocity of the sand particles, and is directly proportional to the peak value of the sand particle concentration in the test location. Besides, a test section of about 1/2 wind tunnel height with uniform sand concentration has been realized in the wind-sand tunnel. The required test wind speed field and corresponding sand concentration can be achieved by adjusting the sand leakage volume fraction, sand leakage speed, and test position to complete the wind-sand quantitative tests for wind engineering well.
-
Key words:
- wind-blown-sand two phase flow /
- FLUENT /
- numerical simulation /
- wind-sand field /
- wind tunnel model
-
-
黄诗晴. 辽西北地区土地荒漠化的成因及治理对策分析[J]. 农业科技与信息,2016(35): 39-40. 张永民,赵士洞. 全球荒漠化现状及防治对策[J]. 西部大开发,2016(5): 17-19. BAGNOLD R A. The physics of blown sand and desert dunes[M]. London: Methuen, 1941: 27-45. OWEN P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2): 225-242. doi: 10.1017/S0022112064001173 ANDERSON R S, HAFF P K. Wind modification and bed response during saltation of sand in air[J]. Acta Mechanica, 1991, 1(Sup1): 21-51. ARUNDEL P A, HOBSON C A, LALOR M J, et al. Measurement of individual alumina particle velocities and the relative slip of different-sized particles in a vertical gas-solid suspension flow using a laser anemometer system[J]. Journal of Physics D, 1974, 6(6): 2288-2300. doi: 10.1126/science.241.4867.820 SHAO Y, LI A. Numerical modelling of saltation in the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1999, 91(2): 199-225. doi: 10.1023/A:1001816013475 PYE K. Wind as a geological process[J]. Physics of the Earth and Planetary Interiors, 1987, 43(1): 90-91. DING J, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538. doi: 10.1002/aic.690360404 王萍,郑晓静. 野外近地表风沙流脉动特征分析[J]. 中国沙漠,2013,33(6): 1622-1628. doi: 10.7522/j.issn.1000-694X.2013.00241 张伟民,王涛,汪万福,等. 复杂风况条件下戈壁输沙量变化规律的研究[J]. 中国沙漠,2011,31(3): 543-549. 李朝妹,袁树杰,张振彬. 风沙绕流建筑物流场的数值模拟研究[J]. 建筑热能通风空调,2012,31(2): 66-68. doi: 10.3969/j.issn.1003-0344.2012.02.018 刘博. 风沙绕流群体建筑物的数值模拟研究[D]. 阿拉农: 塔里木大学, 2015. 李正农,王尚雨,宫博,等. 风沙对低矮建筑整体受力影响的风洞试验研究[J]. 土木工程学报,2017(1): 63-69.LI Zhengnong, WANG Shangyu, GONG Bo, et al. Wind tunnel test for impact of wind-sand flow on overall forces of low-rise building[J]. China Civil Engineering Journal, 2017(1): 63-69. 岳高伟,毕伟,贾慧娜. 风沙运动的理论模拟和风洞实验对比研究[J]. 干旱区地理,2014,37(1): 81-88.YUE Gaowei, BI Wei, JIA Huina. Theoretical simulation and wind tunnel experiment in wind-blown sand movement[J]. Arid Land Geography, 2014, 37(1): 81-88. 李正农, 范晓飞, 蒲鸥, 等. 建筑物风沙流场与荷载的风洞试验研究[J]. 工程力学, 2020, 37(1): 152-158, 182LI Zhenglong, FAN Xiaofei, PU Ou. et al. Wind tunnel test on wind-sand flow field and wind-sand load on buildings[J]. Engineering Mechanics, 2020. 37(1): 152-158, 182 王康龙. 风沙流的双流体模型参数及输沙量分布特征研究[D]. 兰州: 兰州大学, 2014. MARSHALL J K. Drag measurements in roughness arrays of varying density and distribution[J]. Agricultural Meteorology, 1971, 8(71): 269-292. GREELEY R, IVERSEN J. Book-review:wind as a geological process on earth,mars,venus and titan[J]. Earth Moon and Planets, 1986, 42: 311-313. 期刊类型引用(8)
1. 袁观富,李一诺. 基于模糊层次分析的再生粗骨料综合分级方法. 建材世界. 2024(04): 19-22+33 . 百度学术
2. 张玉栋,谢龙,张富钧,张佳帅,曹颖卓,高玉增. 二次再生混凝土力学性能研究. 混凝土. 2024(07): 15-18+27 . 百度学术
3. 谢祥兵,包梦,李广慧,史科,李晗. 基于改进灰熵关联分析的混合型再生粗骨料评价指标及分级研究. 硅酸盐通报. 2022(01): 354-362 . 百度学术
4. 薛翠真,朱翔琛. 建筑垃圾砖粉颗粒特征对胶凝材料体系密实填充效应的影响. 材料科学与工程学报. 2022(03): 455-459 . 百度学术
5. 陈青青. 水玻璃改性建筑垃圾骨料混凝土的力学性能研究. 混凝土. 2022(07): 99-102+106 . 百度学术
6. 陆建宏. 再生混凝土的制备及耐久性分析. 实验室研究与探索. 2021(05): 45-47+52 . 百度学术
7. 崔鹏. RCA强度对再生混凝土力学及变形的影响. 甘肃科技. 2021(17): 111-114 . 百度学术
8. 万炳彤,鲍学英,李爱春. 再生混凝土细骨料质量等级评价研究. 硅酸盐通报. 2019(09): 2758-2764 . 百度学术
其他类型引用(4)
-