• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于深度学习的复合神经网络机场信号检测框架

侯进 吕志良 徐茂 吴佩军 刘雨灵 张笑语 陈曾

侯进, 吕志良, 徐茂, 吴佩军, 刘雨灵, 张笑语, 陈曾. 基于深度学习的复合神经网络机场信号检测框架[J]. 西南交通大学学报, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
引用本文: 侯进, 吕志良, 徐茂, 吴佩军, 刘雨灵, 张笑语, 陈曾. 基于深度学习的复合神经网络机场信号检测框架[J]. 西南交通大学学报, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164
Citation: HOU Jin, LÜ Zhiliang, XU Mao, WU Peijun, LIU Yuling, ZHANG Xiaoyu, CHENG Zeng. Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869, 878. doi: 10.3969/j.issn.0258-2724.20180164

基于深度学习的复合神经网络机场信号检测框架

doi: 10.3969/j.issn.0258-2724.20180164
详细信息
    作者简介:

    侯进(1969—),女,副教授,博士,研究方向为计算机图形学、机器学习、深度学习、人工智能,E-mail:jhou@swjtu.edu.cn

  • 中图分类号: V221.3

Combined Neural Networks Based on Deep Learning for Signal Detection in Aeronautical Communications

  • 摘要: 针对信号调制识别对复杂通信环境缺乏适应性与精度不足的问题,提出一种基于深度学习的多特征复合神经网络框架. 该框架首先使用前端卷积神经网络检测信号载波特征,再对前端初筛选信号执行预处理将其转换为信号时频图,最后设计了后端轻量化卷积神经网络,检测信号时频特征. 基于TensorFlow平台的复合神经网络对机场真实信号检测精度达到99.23%,实验表明该方法可有效应用于实时机场信号检测.

     

  • 图 1  系统框架

    Figure 1.  System framework

    图 2  前端CNN权值层

    Figure 2.  Weight layers of front CNN

    图 3  信号预处理过程

    Figure 3.  Signal data pre-process

    图 4  后端原型CNN构件

    Figure 4.  Prototypical backend CNN components

    图 5  拆解卷积核

    Figure 5.  Convolutional kernel deconstruction

    图 6  残差连接

    Figure 6.  Residual connection

    图 7  前端CNN与决策树混淆矩阵

    Figure 7.  Confusion matrices of front CNN and decision-tree

    图 8  前端CNN与文献[8]验证精度曲线

    Figure 8.  Validation curves of front CNN and Ref. [8]

    图 9  后端CNN第三层卷积提取特征

    Figure 9.  Extracted features of the third convolutional layer of backend CNN

    图 10  后端CNN验证精度曲线

    Figure 10.  Validation curves of backend CNN

    图 11  后端与V2 CNN混淆矩阵

    Figure 11.  Confusion matrices of backend CNN and V2 CNN

    图 12  后端CNN单通道灰度训练

    Figure 12.  Single-channel grey images for backend CNN

    图 13  各项试验的精度与耗时

    Figure 13.  Accuracy and consumed time of experiments

    表  1  决策树与前端CNN对比结果

    Table  1.   Comparison between decision-tree and front CNN

    方法识别准确率/%耗时/s
    前端 CNN90.168.5
    决策树81.333.8
    下载: 导出CSV

    表  2  前端CNN与文献[8]CNN对比结果

    Table  2.   Comparison of front CNN and that in Ref. [8]

    方法识别准确率/%耗时/sCNN参数量
    前端 CNN90.168.5707 756
    文献[8] CNN89.3112.72 828 628
    下载: 导出CSV

    表  3  后端CNN与V2 CNN对比结果

    Table  3.   Comparison of backend CNN and V2 CNN

    方法识别准确率/%耗时/sCNN参数量
    后端 CNN99.191 864.6685 380
    V2 CNN99.962 343.358 837 142
    下载: 导出CSV

    表  4  基于复合CNN的实验

    Table  4.   Combined CNN experiment

    方法识别准确率/%耗时/s
    复合 CNN99.23411
    下载: 导出CSV
  • 温欣. 基于决策树的调制模式及GNU Radio模块实现[D]. 哈尔滨: 哈尔滨工业大学, 2010
    LI Shiping, CHEN Fangchao, WANG Long. Modulation recognition algorithm of digital signal based on support vector machine[J]. Control and Decision Conference (CCDC), 2012, 229(5): 3326-3330.
    AHN W H, NAH S P, SEO B S. Automatic classification of digitally modulated signals based on k-nearest neighbor[J]. Lecture Notes in Electrical Engineering, 2015, 329(1): 63-69.
    WONG M L D, TING S K, NANDI A K. Naïve Bayes classification of adaptive broadband wireless modulation types with higher order cumulants[C]//International Conference on Signal Processing and Communication Systems. Gold Coast: [s.n.], 2009, 5(2): 1-5
    XU J L, SU Wei, ZHOU Mengchu. Distributed automatic modulation classification with multiple Sensors[J]. IEEE Sensor Journal, 2010, 10(11): 1779-1785. doi: 10.1109/JSEN.2010.2049487
    HELMY M O, ZAKI F W. Identification of linear dimensional digital modulation schemes via clustering algorithms[C]//International Conference on Computer Engineering & Systems. Cairo: [s.n.], 2009, 5(1): 358-390
    HARING L, CHEN Y, CZYLWIK A. Automatic modulation classification methods for wireless OFDM system in TDD mode[J]. IEEE Transaction on Communications, 2010, 58(9): 2480-2485. doi: 10.1109/TCOMM.2010.080310.090228
    O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks. Aberdeen: [s.n.], 2016, 6(1): 213-226
    O’SHEA T J, WEST N. Radio machine learning dataset generation with gnu radio[C]//Proceedings of the GNU Radio Conference. Boulder: [s.n.], 2016, 1(1): 69-74
    WEST N E, O’SHEA T J. Deep architectures for modulation recognition[C]//IEEE International Symposium on Dynamic Spectrum Access Networks. Baltimore: [s.n.], 2017: 1-6
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    SIMONYAN K, ZISSERMAN A. Very deep convoluiotnal networks for large-scale image recognititon[DB/OL]. [2018-02-22]. https://arxiv.org/abs/1409.1556
    HUBEL D H, WIESEL T N. Receptive fields,binocular inter-action and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. doi: 10.1113/jphysiol.1962.sp006837
    FUKUSHIMA, K NEOCOGNITRON. A self organizing neural network model for a mechanism of pattern recognition un-affected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. doi: 10.1007/BF00344251
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille: [s.n.], 2015, 33(1): 448-456
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas: IEEE, 2016, 26(1): 2818-2826
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas: IEEE, 2016, 26(1): 770-778
    LIN M, CHEN Q, YAN S. Network in network[DB/OL]. [2018-02-22]. https://arxiv.org/abs/1312.4400
    KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Lake Tahoe: [s.n.], 2012, 60(2): 1097-1105
    SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, inception-resnet and the impact of residual connections on learning[C]// Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: [s.n.], 2017: 936-940
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  191
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-10
  • 修回日期:  2018-07-02
  • 网络出版日期:  2018-07-08
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回