• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢桥面板与纵肋焊缝疲劳评估及裂纹扩展研究

黄云 张清华 余佳 郭亚文 卜一之

黄云, 张清华, 余佳, 郭亚文, 卜一之. 钢桥面板与纵肋焊缝疲劳评估及裂纹扩展研究[J]. 西南交通大学学报, 2019, 54(2): 260-268. doi: 10.3969/j.issn.0258-2724.20180129
引用本文: 黄云, 张清华, 余佳, 郭亚文, 卜一之. 钢桥面板与纵肋焊缝疲劳评估及裂纹扩展研究[J]. 西南交通大学学报, 2019, 54(2): 260-268. doi: 10.3969/j.issn.0258-2724.20180129
HUANG Yun, ZHANG Qinghua, YU Jia, GUO Yawen, BU Yizhi. Fatigue Evaluation and Crack Propagation Characteristics of Rib-to-Deck Welded Joints in Steel Bridge Decks[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 260-268. doi: 10.3969/j.issn.0258-2724.20180129
Citation: HUANG Yun, ZHANG Qinghua, YU Jia, GUO Yawen, BU Yizhi. Fatigue Evaluation and Crack Propagation Characteristics of Rib-to-Deck Welded Joints in Steel Bridge Decks[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 260-268. doi: 10.3969/j.issn.0258-2724.20180129

钢桥面板与纵肋焊缝疲劳评估及裂纹扩展研究

doi: 10.3969/j.issn.0258-2724.20180129
基金项目: 国家自然科学基金资助项目(51578455;51778533;50908192;51178394);国家科技支撑计划资助项目(2011BAG07B03);湖北省交通运输厅科技项目(2017-538-2-4)
详细信息
    作者简介:

    黄 云(1985—),男,博士研究生,研究方向为钢结构与钢-混凝土组合结构桥梁,E-mail:civilhy@163.com

    通讯作者:

    张清华(1975—),男,教授,博士,博士生导师,研究方向为钢结构与钢-混凝土组合结构桥梁,E-mail:swjtuzqh@126.com

  • 中图分类号: U441.4

Fatigue Evaluation and Crack Propagation Characteristics of Rib-to-Deck Welded Joints in Steel Bridge Decks

  • 摘要: 为研究正交异性钢桥面板纵肋与顶板连接焊缝的裂纹扩展特性并建立相应的疲劳寿命评估方法,考虑裂纹扩展模拟方法以及材料特性等因素对于裂纹扩展过程与疲劳寿命预测的影响,以某长江公路大桥重载交通钢桥面板为研究对象,进行了疲劳模型试验和理论研究. 综合运用疲劳试验与断裂力学数值模拟研究起始于焊根位置裂纹的疲劳寿命评估问题,探明了疲劳裂纹的扩展特性. 研究结果表明:基于常幅疲劳加载的寿命预测结果与试验实测值间的相对误差小于10%,且预测结果偏于安全;裂纹扩展路径及裂纹面空间形态等扩展特性与疲劳试验相吻合;裂纹扩展模拟方法、扩展角计算准则、材料特性和初始裂纹深度是疲劳寿命预测的关键影响因素;起始于焊根的疲劳裂纹属于Ⅰ型主导的复合型裂纹,疲劳寿命评估应考虑Ⅱ型与Ⅲ型裂纹的影响;裂纹面呈现出典型的空间曲面特征,其深度与长度之比介于0.20~0.63之间,最大扩展角为12.7°;疲劳寿命评估结果对于初始裂纹深度取值较为敏感,应结合工程实际确定合理取值.

     

  • 图 1  裂纹扩展增量计算示意

    Figure 1.  Schematic diagram of crack growth increment

    图 2  试件模型疲劳试验加载与测试

    Figure 2.  Fatigue loading and strain measurement of test models

    图 3  纵肋顶板连接焊缝焊根疲劳裂纹

    Figure 3.  Fatigue cracks that originated from weld roots

    图 4  裂纹扩展分析整体模型与实体子模型

    Figure 4.  Global model and solid submodel for crack growth analysis

    图 5  疲劳裂纹扩展空间形态

    Figure 5.  Spatial shape change of fatigue crack propagation

    图 6  裂纹扩展关键指标变化规律

    Figure 6.  Variations of key indicators during the crack growth process

    图 7  裂纹扩展路劲与形态变化规律

    Figure 7.  Variations of crack growth paths and shape

    图 8  裂纹扩展速率曲线

    Figure 8.  Curves of fatigue crack growth rates

    图 9  材料特性参数对疲劳寿命影响

    Figure 9.  Influence of material parameters on fatigue life

    图 10  初始裂纹尺寸对疲劳寿命影响

    Figure 10.  Influence of initial crack size on fatigue life

    表  1  基于裂纹扩展分析的疲劳寿命评估

    Table  1.   Fatigue life assessment based on crack propagation analysis

    裂纹扩展分析方法扩展角计算准则试件Ⅰ试件Ⅱ
    疲劳寿命/ 万次相对误差/%疲劳寿命/万次相对误差/%
    拟静力MTS86.07.5138.96.8
    GEN88.710.9147.413.3
    SERR85.36.6141.08.4
    常幅疲劳加载MTS75.3–5.9120.1–7.7
    GEN73.8–7.8117.7–9.5
    SERR74.9–6.4120.9–7.1
    下载: 导出CSV

    表  2  材料特性参数推荐值

    Table  2.   Recommended values of material parameters

    参 数IIWBS7910BS7608JSSC
    $C$5.213.983.020
    $n$32.8832.75
      注:参数$C$的单位为N•mm–3/2;BS7910对应的参      数值为2005版此规范双线性Paris公式中阶      段B取值.
    下载: 导出CSV
  • 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报,2014,27(5): 1-96. doi: 10.3969/j.issn.1001-7372.2014.05.001

    Editorial Department of China Journal of Highway and Transport. Review of china’s bridge engineering research:2014[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96. doi: 10.3969/j.issn.1001-7372.2014.05.001
    DE JONG F B P. Renovation techniques for fatigue cracked orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2007
    WOLCHUK R. Lessons from weld cracks in orthotropic decks on three European bridges[J]. Journal of Structural Engineering, 1990, 116(1): 75-84. doi: 10.1061/(ASCE)0733-9445(1990)116:1(75)
    KOLSTEIN M H. Fatigue classification of welded joints in orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2007
    张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报,2017,30(3): 14-30. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qinghua, BU Yizi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30. doi: 10.3969/j.issn.1001-7372.2017.03.002
    黄云. 基于损伤力学的正交异性板疲劳裂纹形成寿命研究[D]. 成都: 西南交通大学, 2013
    CHENG B, YE X, CAO X, et al. Experimental study on fatigue failure of rib-to-deck welded connections in orthotropic steel bridge decks[J]. International Journal of Fatigue, 2017, 103: 157-167. doi: 10.1016/j.ijfatigue.2017.05.021
    YA S, YAMADA K, SHIKAWA T. Fatigue evaluation of rib-to-deck welded joints of orthotropic steel bridge deck[J]. Journal of Bridge Engineering, 2013, 18(5): 492-499.
    MARTINSSON J. Fatigue assessment of complex welded steel structures[D]. Stockholm: Royal Institute of Technology, 2005
    FISHER J W, BARSOM J M. Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J]. Journal of Bridge Engineering, 2016, 21(3): 1-10.
    XIAO Z G, YAMADA K, YA S, et al. Stress analyses and fatigue evaluation of rib-to-deck joints in steel orthotropic decks[J]. International Journal of Fatigue, 2008, 30(8): 1387-1397. doi: 10.1016/j.ijfatigue.2007.10.008
    卫星,姜苏. 基于断裂力学的钢桥面肋-板接头疲劳寿命预测[J]. 西南交通大学学报,2017,52(1): 16-22. doi: 10.3969/j.issn.0258-2724.2017.01.003

    WEI Xing, JIANG Su. Fatigue life prediction on rib-to-deck welded joints of steel bridge deck based on LEFM[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 16-22. doi: 10.3969/j.issn.0258-2724.2017.01.003
    BEGHINI M, BERTINI L, VITALE E. Fatigue crack growth in residual stress fields:experimental results and modelling[J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(12): 1433-1444.
    AYGÜL M, AL-EMRANI M, BARSOUM Z, et al. Investigation of distortion-induced fatigue cracked welded details using 3D crack propagation analysis[J]. International Journal of Fatigue, 2014, 64(7): 54-66.
    洪起超. 工程断裂力学基础[M]. 上海: 上海交通大学出版社, 1987: 54-58
    WARZYNEK P A, CARTER B J, BANKS-SILLS L. The M-integral for computing stress intensity factors in generally anisotropic materials[R]. Huntsville: NASA Marshall Space Flight Center, 2005
    British Standards Institution. Guide on methods for assessing the acceptability of flaws in metallic structures: BS7910[S]. London: British Standard Institution, 2013
    PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533. doi: 10.1115/1.3656900
    HOBBACHER A F. Recommendations for fatigue design of welded joints and components[M]. Switzerland: Springer International Publishing, 2016: 73-75
    British Standards Institution. Fatigue design and assessment of steel structures: code of practice: BS7608[S]. London: British Standard Institution, 1993
    RADAJ D, SONSINO C M, FRICKE W. Fatigue assessment of welded joints by local approaches[M]. Cambridge: Woodhead Publishing, 2006: 263-267
    日本鋼構造物協会. 鋼構造物の疲労設計指針·同解説: JSS Ⅳ 09-2010[S]. 東京: 技報堂出版, 2012
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1786
  • HTML全文浏览量:  488
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-07-04
  • 网络出版日期:  2018-12-27
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回