• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于影响矩阵的桁架结构预应力损失识别方法

刘艳辉 张阳阳 刘军校 任鹏 卓彪

刘艳辉, 张阳阳, 刘军校, 任鹏, 卓彪. 基于影响矩阵的桁架结构预应力损失识别方法[J]. 西南交通大学学报, 2019, 54(5): 1030-1037. doi: 10.3969/j.issn.0258-2724.20180107
引用本文: 刘艳辉, 张阳阳, 刘军校, 任鹏, 卓彪. 基于影响矩阵的桁架结构预应力损失识别方法[J]. 西南交通大学学报, 2019, 54(5): 1030-1037. doi: 10.3969/j.issn.0258-2724.20180107
LIU Yanhui, ZHANG Yangyang, LIU Junxiao, REN Peng, ZHUO Biao. Prestress Loss Identification Method Based on Influence Matrix in Truss Structure[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1030-1037. doi: 10.3969/j.issn.0258-2724.20180107
Citation: LIU Yanhui, ZHANG Yangyang, LIU Junxiao, REN Peng, ZHUO Biao. Prestress Loss Identification Method Based on Influence Matrix in Truss Structure[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1030-1037. doi: 10.3969/j.issn.0258-2724.20180107

基于影响矩阵的桁架结构预应力损失识别方法

doi: 10.3969/j.issn.0258-2724.20180107
基金项目: 国家重点研究课题(2016YFC0802205-9);国家自然科学基金资助项目(51378427)
详细信息
    作者简介:

    刘艳辉(1969—),女,副教授,研究方向为混凝土结构设计理论,E-mail:yhliu@swjtu.edu.cn

  • 中图分类号: TU378.6

Prestress Loss Identification Method Based on Influence Matrix in Truss Structure

  • 摘要: 为计算出每束预应力钢束实时的预应力损失,依据预应力桁架结构观测变形,基于位移影响矩阵原理提出一种预应力损失识别方法. 通过有限元分析,建立预应力损失值与桁架结构观测点位移值之间的关系方程,并依据极小值优化原理,获得预应力损失值. 研究表明:当单位预应力损失取30%~50%时,得到的位移影响矩阵计算预应力损失时误差最小,约为1%~2%;三角形桁架1/4跨度和3/4跨度处位移观测点对预应力损失的敏感性最高. 最后,以黔渝线上某高铁站房的大跨钢筋预应力桁架结构为例,验证了该方法的正确性.

     

  • 图 1  预应力损失计算流程

    Figure 1.  Flow chart of prestress loss calculation

    图 2  桁架结构一详图

    Figure 2.  No.1 Truss structure diagram

    图 3  桁架一腹杆截面详图

    Figure 3.  No.1 truss web member sections

    图 4  桁架一观测点位置

    Figure 4.  Locations of No.1 truss observation points

    图 5  桁架一预应力损失引起观测点位移变化

    Figure 5.  Displacement variations of No.1 truss observation points due to prestress loss

    图 6  桁架二详图

    Figure 6.  No.2 Truss structure diagram

    图 7  桁架二腹杆截面详图

    Figure 7.  No.2 Truss web member sections

    图 8  桁架二预应力损失引起观测点位移变化值

    Figure 8.  Displacement variations of observation points on No.2 truss due to prestress loss

    图 9  C40混凝土徐变系数和收缩应变

    Figure 9.  C40 concrete creep coefficient and shrinkage strain

    图 10  桁架观测点位置

    Figure 10.  Locations of truss observation points

    表  1  精确度验算1(单位预应力损失取10%)

    Table  1.   Checking calculation of accuracy with unit prestress loss of 10%

    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    6.005.655.9115.0013.907.3530.0027.647.86
    7.006.852.2020.0019.522.3950.0048.922.16
    8.007.358.1530.0028.196.0440.0036.578.57
    9.008.920.9220.0019.751.2730.0029.491.71
    10.009.841.6215.0014.403.9820.0018.636.85
    下载: 导出CSV

    表  2  精确度验算2(单位预应力损失取30%)

    Table  2.   Checking calculation of accuracy with unit prestress loss of 30%

    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    6.005.960.6215.0014.811.2530.0029.651.15
    7.006.980.2120.0019.930.3750.0049.850.31
    8.008.091.1830.0029.810.6440.0039.670.83
    9.008.980.2820.0019.930.3630.0029.900.34
    10.0010.040.4015.0014.970.2120.0019.751.24
    下载: 导出CSV

    表  3  精确度验算3(单位预应力损失取50%)

    Table  3.   Checking calculation of accuracy with unit prestress loss of 50%

    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    计算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    6.005.950.8515.0014.851.0030.0029.710.96
    7.006.970.3720.0019.940.3250.0049.860.28
    8.008.010.1130.0029.760.7940.0039.481.30
    9.008.990.1420.0019.970.1730.0029.960.13
    10.0010.060.6415.0015.050.3420.0019.870.64
    下载: 导出CSV

    表  4  精确度验算4(单位预应力损失取100%)

    Table  4.   Checking calculation of accuracy with unit prestress loss of 100%

    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    假设预应力
    损失
    反算预应力
    损失
    相对
    误差
    6.006.142.3415.0015.362.4230.0030.672.23
    7.006.891.5420.0019.711.4350.0049.221.57
    8.008.060.8130.0029.920.2840.0039.670.83
    9.008.871.4920.0019.701.5130.0029.541.53
    10.0010.121.2015.0015.161.0620.0020.010.03
    下载: 导出CSV

    表  5  观测点位移数据计算值

    Table  5.   Calculation results of observation point displacement

    观测点各组预应力
    无损失时
    钢束组1预
    应力损失
    钢束组2预
    应力损失
    钢束组3预
    应力损失
    钢束组4预
    应力损失
    钢束组5预
    应力损失
    17.0096.7757.475 6.8786.9937.000
    211.980 11.664 12.25212.044 11.93211.949
    312.33112.030 12.44312.364 13.01212.270
    43.521 3.3414.0553.456 3.5083.516
    59.9309.61910.33210.0249.9119.908
    611.01010.69511.20711.06212.06810.967
    710.1009.86810.17710.12310.556 10.308
    下载: 导出CSV

    表  6  预应力损失识别系数计算

    Table  6.   Identification coefficients of prestress loss

    项目σ%
    10%20%25%20%30%
    理论值0.333 30.666 60.833 30.660 01.000 0
    计算值0.334 60.667 00.837 00.666 40.998 3
    下载: 导出CSV
  • 吕大刚,王光远. 结构智能健康诊断的信息融合原理[J]. 哈尔滨建筑大学学报,2002,35(4): 1-4.

    LÜ Dagang, WANG Guangyuan. Information fusion principle for intelligent health diagnosis of structures[J]. Journal of Harbin University of C. E. & Architecture, 2002, 35(4): 1-4.
    中华人民共和国住房和城乡建设部, 中户人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2015
    李乔. 混凝土结构设计原理[M]. 北京: 中国铁道出版社, 2013: 23-27, 240-243
    曾丁,王国亮. 预应力混凝土梁疲劳预应力损失探索性试验[J]. 公路交通科技,2012,29(12): 79-83. doi: 10.3969/j.issn.1002-0268.2012.12.013

    ZENG Ding, WANG Guoliang . Exploratory experiment of fatigue prestress loss of prestressed concrete beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29(12): 79-83. doi: 10.3969/j.issn.1002-0268.2012.12.013
    VIMALANANDAM V, SAIBABU S, SREENATH H G, et al. Estimation of residual prestress in uninstrumented prestressed concrete structures using SSRHT in wires[J]. Indian Concrete Journal, 2000, 74(11): 631-636.
    CHEN H L, WISSAWAPAISAL K. Application of Wigner-Ville transform to evaluate tensile forces in seven-wire prestressing strands[J]. Journal of Engineering Mechanics, 2002, 128(11): 1295-1301.
    杨国立,李瑞鸽. 预应力混凝土梁中预应力损失检测方法的发展与展望[J]. 四川建筑科学研究,2008,34(4): 113-116. doi: 10.3969/j.issn.1008-1933.2008.04.029

    YANG Guoli, LI Ruigee. Development and prospect of prestress loss detection in prestressed concrete beams[J]. Sichuan Building Science, 2008, 34(4): 113-116. doi: 10.3969/j.issn.1008-1933.2008.04.029
    ABRAHAM M A, PARK S, SMBBS N. Loss of prestress prediction based on nondestructive damage location algo-rithms[C]//Proceedings of SPIE-the International Society for Optical Engineering. San Diego: [s.n.], 1995, 2446: 60-67
    AYAHO M, KEI K, HIDEAKI N. Bridge mana gement system and maintenance optimization for existing bridges[J]. Computer-Aided Civil and Infrastructure Engineering, 2000(15): 45-55.
    张彬彬,喻红月,王海城. 桥梁检测参数与预应力损失的敏感性分析[J]. 建筑科学,2011(6): 124-127. doi: 10.3969/j.issn.1008-1933.2011.01.032

    ZHANG Binbin, YU Hongyue, WANG Haichen. Parameters of bridge measurement and sensitivity analysis of prestress loss[J]. Building Science, 2011(6): 124-127. doi: 10.3969/j.issn.1008-1933.2011.01.032
    孙志伟,邬晓光. 基于长期损失灰色预测的竖向预应力控制[J]. 武汉大学学报(工学版),20172,50(1): 120-124.

    SUN Zhiwei, WU Xiaoguang. Stress under anchor controlling in vertical prestress from long-term loss by gray prediction[J]. Engineering Journal of Wuhan University, 20172, 50(1): 120-124.
    黄海东,向中富. 基于预应力损失识别的连续刚构桥内力计算方法[J]. 公路交通科技,2008(6): 71-75. doi: 10.3969/j.issn.1002-0268.2008.06.015

    HUANG Haidong, XIANG Zhongfu. Calculation method of internal force of continuous rigid frame bridge based on prestress losses identification[J]. Journal of Highway and Transportation Research and Development, 2008(6): 71-75. doi: 10.3969/j.issn.1002-0268.2008.06.015
    袁卓亚,石雄伟,苗建宝. 基于长期变形监测数据的连续刚构桥预应力损失识别[J]. 长安大学学报,2015,35(6): 79-84.

    YUAN Zhuoya, SHI Xiongwei, MIAO Jianbao. Prestress loss identification of continuous rigid frame bridge based on long term deformation monitoring data[J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(6): 79-84.
    SHYR F Y. Combining laboratory and field data in rail fatigue analysis[D]. Cambridge: Massachusetts Institute of Technology, 1993
    唐兴荣,蒋永生,丁大钧. 预应力混凝土桁架转换层结构的试验研究和设计建议[J]. 土木工程学报,2001,34(4): 32-40. doi: 10.3321/j.issn:1000-131X.2001.04.005

    TANG Xingrong, JIANG, Yongsheng, DING Dajun. Experimental study on transfer-story structure with prestressed concrete truss[J]. China Civil Engineering Journal, 2001, 34(4): 32-40. doi: 10.3321/j.issn:1000-131X.2001.04.005
    许强,陈庆,孙焕纯. 大跨度桁架几何大变形结构分析的一种数值方法[J]. 土木工程学报,2009,42(1): 16-22. doi: 10.3321/j.issn:1000-131X.2009.01.003

    XU Qiang, CHEN Qing, SUN Huanchun. An algorithm for analysis of large span truss structures with large deformation[J]. China Civil Engineering Journal, 2009, 42(1): 16-22. doi: 10.3321/j.issn:1000-131X.2009.01.003
    杨海军,张爱林. 多索预应力桁架结构优化设计[J]. 建筑结构,2007(8): 94-96, 9.

    YANG Haijun, ZHANG Ailin. Optimization design of prestressed truss structures with multiple cables[J]. Building Structure, 2007(8): 94-96, 9.
    张育智,李乔,单德山. 复杂结构损伤识别的广义子结构法[J]. 西南交通大学学报,2009,44(2): 160-165. doi: 10.3969/j.issn.0258-2724.2009.02.003

    ZHANG Yuzhi, LI Qiao, SHAN Deshan. Identification method of genera l sub-structure for damage location of complex structures[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 160-165. doi: 10.3969/j.issn.0258-2724.2009.02.003
    向天宇,赵人达,刘海波. 基于静力测试数据的预应力混凝土连续梁结构损失识别[J]. 土木工程学报,2003,36(11): 83-86. doi: 10.3321/j.issn:1000-131X.2003.11.017

    XIANG Tianyu, ZHAO Renda, LIU Haibo. Damage detection of prestressed concrete continuous beam from static response[J]. China Civil Engineering Journal, 2003, 36(11): 83-86. doi: 10.3321/j.issn:1000-131X.2003.11.017
    王雪玲. 大跨径PC桥梁梁体结构下挠成因分析[D]. 西安: 长安大学, 2008
    王凌波. 在役预应力梁桥残余承载力评估方法研究[D]. 西安: 长安大学, 2011
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  229
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-18
  • 修回日期:  2018-10-15
  • 网络出版日期:  2019-05-30
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回