• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于高斯混合部件模型的铁路扣件检测

何彪 李柏林 罗建桥 王开雄

何彪, 李柏林, 罗建桥, 王开雄. 基于高斯混合部件模型的铁路扣件检测[J]. 西南交通大学学报, 2019, 54(3): 640-646. doi: 10.3969/j.issn.0258-2724.20180077
引用本文: 何彪, 李柏林, 罗建桥, 王开雄. 基于高斯混合部件模型的铁路扣件检测[J]. 西南交通大学学报, 2019, 54(3): 640-646. doi: 10.3969/j.issn.0258-2724.20180077
HE Biao, LI Bailin, LUO Jianqiao, WANG Kaixiong. Railway Fastener Detection Using Gaussian Mixture Part Model[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 640-646. doi: 10.3969/j.issn.0258-2724.20180077
Citation: HE Biao, LI Bailin, LUO Jianqiao, WANG Kaixiong. Railway Fastener Detection Using Gaussian Mixture Part Model[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 640-646. doi: 10.3969/j.issn.0258-2724.20180077

基于高斯混合部件模型的铁路扣件检测

doi: 10.3969/j.issn.0258-2724.20180077
基金项目: 四川省科技支撑计划资助项目(2016GZ0194,2018GZ0361)
详细信息
    作者简介:

    何彪(1989—),男,博士研究生,研究方向为目标检测、模式识别,E-mail:hebiao@my.swjtu.edu.cn

    通讯作者:

    李柏林(1962—),男,博士,教授,研究方向为计算机图形图像处理,E-mail:blli62@263.net

  • 中图分类号: TP391.41

Railway Fastener Detection Using Gaussian Mixture Part Model

  • 摘要: 针对采集图像中铁路扣件存在形状的变化、扣件图像的光照差异较大和扣件被异物局部遮挡的问题,根据对可变形部件模型算法和高斯混合模型的研究,提出了高斯混合部件模型算法. 结合扣件图像边缘特性及改进的Roberts算子计算图像梯度,将归一化后的方向梯度直方图特征作为高斯混合部件模型算法的底层特征,根据扣件形状划分部件,部件之间的相对位置采用星型连接方式度量,运用余弦相似性度量部件中方向梯度直方图特征的相似度,部件模型使用高斯混合模型并采用期望最大化算法迭代求解. 将高斯混合部件模型算法应用于扣件检测中,最终平均检测效果为漏检率3.16%、误检率9.80%、正确率90.27%.

     

  • 图 1  3类亮度扣件图像

    Figure 1.  Three types of brightnesses in a fastener image

    图 2  部分扣件检测结果

    Figure 2.  Fastener detection results

    图 3  局部区域遮挡扣件检测结果

    Figure 3.  Fastener detection results using local occlusion

    图 4  扣件端部遮挡检测结果

    Figure 4.  Fastener detection results using end region occlusion

    表  1  高斯混合部件模型扣件检测结果

    Table  1.   Fastener detection results of the gaussian mixture part model

    方法样本类别样本总数正样本数负样本数样本检测结果漏检率误检率正确率
    真正假正假负真负
    本文方法高亮度2 7042 676282 41802582800.0960.905
    中亮度3 7253 681443 2792402420.0450.1090.892
    低亮度3 0853 062232 7991263220.0430.0860.914
    文献[4]Jitong4 2044 185193 42507601900.1820.819
    Yiwan3 7383 651873 0128639790.0920.1750.827
    文献[3]3 3913 370212 6471723200.0480.2150.786
    文献[2]1 5001 1004000.976
      注:“–”表示原文献中未给出相应数据.
    下载: 导出CSV

    表  2  算法性能比较

    Table  2.   Comparison of algorithm performance

    方法漏检率误检率正确率
    本文3.169.8090.27
    文献[4]7.5517.8582.30
    文献[3]4.8021.5078.60
    文献[2]97.60
    下载: 导出CSV
  • 刘甲甲,李柏林,罗建桥,等. 融合PHOG和MSLBP特征的铁路扣件检测算法[J]. 西南交通大学学报,2015,50(2): 256-263. doi: 10.3969/j.issn.0258-2724.2015.02.008

    LIU Jiajia, LI Bailin, LUO Jianqiao, et al. Railway fastener detection algorithm integrating PHOG and MSLBP features[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 256-263. doi: 10.3969/j.issn.0258-2724.2015.02.008
    刘甲甲,熊鹰,李柏林,等. 基于计算机视觉的轨道扣件缺陷自动检测算法研究[J]. 铁道学报,2016,38(8): 73-80. doi: 10.3969/j.issn.1001-8360.2016.08.011

    LIU Jiajia, XIONG Ying, LI Bailin, et al. Research on automatic inspection algorithm for railway fastener defects based on computer vision[J]. Journal of the China Railway Society, 2016, 38(8): 73-80. doi: 10.3969/j.issn.1001-8360.2016.08.011
    MARINO F, DISTANTE A, MAZZEO P L, et al. A real-time visual inspection system for railway maintenance:automatic hexagonal-headed bolts detection[J]. IEEE Transactions on Systems Man & Cybernetics Part C:Applications & Reviews, 2007, 37(3): 418-428.
    DOU Yunguang, HUANG Yaping, LI Qingyong, et al. A fast template matching-based algorithm for railway bolts detection[J]. International Journal of Machine Learning & Cybernetics, 2014, 5(6): 835-844.
    HORAUD R, FORBES F, YGUEL M, et al. Rigid and articulated point registration with expectation conditional maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 587-602. doi: 10.1109/TPAMI.2010.94
    JIAN Bing, VEMURI B C. Robust point set registration using gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645. doi: 10.1109/TPAMI.2010.223
    MYRONENKO A, SONG Xubo. Point set registration:coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275. doi: 10.1109/TPAMI.2010.46
    SÁNCHEZ J, PERRONNIN F, MENSINK T, et al. Image classification with the fisher vector:theory and practice[J]. International Journal of Computer Vision, 2013, 105(3): 222-245. doi: 10.1007/s11263-013-0636-x
    YU Guoshen, SAPIRO G, MALLAT S. Solving inverse problems with piecewise linear estimators:from Gaussian mixture models to structured sparsity[J]. IEEE Transactions on Image Processing, 2012, 21(5): 2481-2499. doi: 10.1109/TIP.2011.2176743
    FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. doi: 10.1109/TPAMI.2009.167
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D. Cascade object detection with deformable part models[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 2241-2248
    FELZENSZWALB P F, MCALLESTER D. Object detection grammars[C]//ICCV Workshops. Piscataway: IEEE, 2011: 691
    YANG Yi, RAMANAN D. Articulated pose estimation with flexible mixtures-of-parts[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 1385-1392
    YANG Yi, RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2878-2890. doi: 10.1109/TPAMI.2012.261
    SEO H J, MILANFAR P. Training-free,generic object detection using locally adaptive regression kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1688-704. doi: 10.1109/TPAMI.2009.153
    DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893
    MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proc of Berkeley Symposium on Mathematical Statistics & Probability. California: University of California Press, 1967: 281-297
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  194
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-04-08
  • 网络出版日期:  2019-02-23
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回