• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

滚动方向对CL60车轮材料接触疲劳损伤的影响

胡月 李群 刘启跃 郭俊 王文健

胡月, 李群, 刘启跃, 郭俊, 王文健. 滚动方向对CL60车轮材料接触疲劳损伤的影响[J]. 西南交通大学学报, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073
引用本文: 胡月, 李群, 刘启跃, 郭俊, 王文健. 滚动方向对CL60车轮材料接触疲劳损伤的影响[J]. 西南交通大学学报, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073
HU Yue, LI Qun, LIU Qiyue, GUO Jun, WANG Wenjian. Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073
Citation: HU Yue, LI Qun, LIU Qiyue, GUO Jun, WANG Wenjian. Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 84-91. doi: 10.3969/j.issn.0258-2724.20180073

滚动方向对CL60车轮材料接触疲劳损伤的影响

doi: 10.3969/j.issn.0258-2724.20180073
基金项目: 国家自然科学基金资助项目(51775455,51475393);国家重点实验室自主研究课题(2018TPL-T02)
详细信息
    作者简介:

    胡月(1993—),女,博士研究生,研究方向为轮轨系统摩擦学,E-mail:787531808@qq.com

    通讯作者:

    郭俊(1972—),男,研究员,研究方向为高速轮轨关系,E-mail:guojun@swjtu.edu.cn

  • 中图分类号: TH117.1

Effect of Rolling Direction on Contact Fatigue Damage of CL60 Wheel Steel

  • 摘要: 为研究车轮滚动方向对车轮材料接触疲劳损伤的影响机制,利用WR-1滚动磨损试验机进行了车轮单向和双向运行滚滑磨损试验,使用光镜和扫描电镜分析了试验后车轮试样的表面磨损形貌、剖面疲劳裂纹形貌及磨屑尺寸,探究了换向运行工况下车轮表面损伤、裂纹扩展、磨屑尺寸随反向循环次数的演变规律. 研究结果表明:车轮表面损伤以起皮剥落为主,反向循环次数从1万次增加到12万次时,初始剥落逐渐消失,继而形成与原滚动方向相反的新剥落,相同循环次数下改变车轮滚动方向有利于减轻车轮材料疲劳损伤;车轮换向改变了表面微裂纹的扩展方向,形成4°~8° 的反向疲劳裂纹,并出现了裂纹扭曲和分支现象;单向滚动时,随循环次数增加,磨屑尺寸先增大后减小,反向后磨屑厚度先增大后减小,反向1万次时,磨屑厚度增大到10~12 μm,为单向时的两倍.

     

  • 图 1  轮轨试样尺寸

    Figure 1.  Specimen size of wheel and rail

    图 2  车轮试样表面磨损形貌SEM图片

    Figure 2.  SEM micrographs of worn surface of wheel steels

    图 3  车轮试样裂纹形貌

    Figure 3.  SEM micrographs of cracks of wheel steels

    图 4  车轮试样裂纹总体形貌(12万次后反向1万次)

    Figure 4.  General SEM micrographs of cracks of wheel steels (reverse 10 000 cycles after 120 000 cycles)

    图 5  单向滚动工况不同试验时间下的磨屑形貌

    Figure 5.  SEM micrographs of wear debris under different steps of unidirectional condition

    图 6  换向工况下的磨屑形貌

    Figure 6.  SEM micrographs of wear debris under reversal conditions

    表  1  轮轨试样化学成分质量百分数

    Table  1.   Mass percent chemical compositions of wheel and rail %

    项目 C Si Mn P S
    车轮(CL60) 0.550~0.650 0.170~0.370 0.500~0.800 0.035 0.040
    钢轨(U75V) 0.650~0.750 0.150~0.580 0.700~1.200 ≤ 0.025 ≤ 0.025
    下载: 导出CSV
  • DONZELLA G, FACCOLI M, GHIDINI A, et al. The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics, 2005, 72: 287-308. doi: 10.1016/j.engfracmech.2004.04.011
    CANNON D F, PRADIER H. Rail rolling contact fatigue research by the European Rail Research Institute[J]. Wear, 1996, 191(1/2): 1-13.
    EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258: 1288-1300. doi: 10.1016/j.wear.2004.03.039
    刘启跃, 何成刚,黄育斌,等. 轮轨疲劳损伤模拟实验研究及展望[J]. 西南交通大学学报,2016,51(2): 282-290. doi: 10.3969/j.issn.0258-2724.2016.02.008

    LIU Qiyue, HE Chenggang, HUANG Yubin, et al. Research and prospects of simulation experiment on wheel/rail fatigue damage[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 282-290. doi: 10.3969/j.issn.0258-2724.2016.02.008
    KAMMERHOFER C, HOHENWARTER A, PIPPAN R. A novel laboratory test rig for probing the sensitivity of rail steels to RCF and wear-first experimental results[J]. Wear, 2014, 316: 101-108. doi: 10.1016/j.wear.2014.04.008
    KRÁČALÍK M, TRUMMER G, DAVES W. Application of 2D finite element analysis to compare cracking behaviour in twin-disc tests and full scale wheel/rail experiments[J]. Wear, 2016, 346: 140-147.
    DIRKS B, ENBLOM R, BERG M. Prediction of wheel profile wear and crack growth:comparisons with measurements[J]. Wear, 2016, 366: 84-94.
    李晓宇. 钢轨踏面斜裂纹扩展行为的仿真研究[D]. 北京: 铁道科学研究院, 2007.
    KAPOOR A, FLETCHER D I, FRANKLIN F J. The role of wear in enhancing rail life[J]. Tribology Series, 2003, 41: 331-340. doi: 10.1016/S0167-8922(03)80146-3
    王文健. 轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D]. 成都: 西南交通大学, 2008.
    黄育斌,何成刚,马蕾,等. 干态下车轮材料表面疲劳裂纹萌生试验研究[J]. 摩擦学学报,2016,36(2): 194-200.

    HUANG Yubin, HE Chenggang, MA Lei, et al. Experimental study on initiation of surface fatigue crack of wheel material under dry condition[J]. Tribology Journal, 2016, 36(2): 194-200.
    黄育斌. 轮轨材料表面疲劳裂纹形成机理与演变研究[D]. 成都: 西南交通大学, 2016.
    FUJITA K, FUJITA A. The effect of changing the rolling direction on the rolling contact fatigue lives of annealed and case-hardened steel rollers[J]. Wear, 1977, 43(3): 315-327. doi: 10.1016/0043-1648(77)90128-4
    TYFOUR W R, BEYNON J H. The effect of rolling direction reversal on fatigue crack morphology and propagation[J]. Tribology International, 1994, 27(4): 273-282. doi: 10.1016/0301-679X(94)90007-8
    TYFOUR W R, BEYNON J H. The effect of rolling direction reversal on the wear rate and wear mechanism of pearlitic rail steel[J]. Tribology International, 1994, 27(6): 401-412. doi: 10.1016/0301-679X(94)90017-5
    ASADI A L, KAPOOR A. An investigation to the influence of bogie direction reversal on equalizing rail vehicle wheel wear[J]. Wear, 2008, 265: 65-71. doi: 10.1016/j.wear.2007.08.023
    ASADI A L, YOUNESIAN D, SCHMID F. Tangential force variation due to the bogie direction reversal procedure[J]. Vehicle System Dynamics, 2007, 45(4): 359-373. doi: 10.1080/00423110600999912
    MA L, SHI L B, GUO J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018, 394: 149-158.
    LEWIS R, MAGEL E, WANG W J, et al. Towards a standard approach for the wear testing of wheel and rail materials[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(7): 760-774. doi: 10.1177/0954409717700531
    KAPOOR A. Wear by plastic ratcheting[J]. Wear, 1997, 212: 119-130. doi: 10.1016/S0043-1648(97)00083-5
    WAGNER F, OUAREM A, GU C F, et al. A new method to determine plastic deformation at the grain scale[J]. Materials Characterization, 2014, 92: 106-117. doi: 10.1016/j.matchar.2014.03.007
    TRUMMER G, MARTE C, DIETMAIER P, et al. Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account[J]. Wear, 2016, 352: 136-145.
    SUH P N. The delamination theory of wear[J]. Wear, 1973, 25: 111-124. doi: 10.1016/0043-1648(73)90125-7
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  219
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-04-26
  • 网络出版日期:  2018-05-22
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回