• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

硬岩掘进机液压阀块设计方法

张怀亮 赵丽娜 周井行

张怀亮, 赵丽娜, 周井行. 硬岩掘进机液压阀块设计方法[J]. 西南交通大学学报, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072
引用本文: 张怀亮, 赵丽娜, 周井行. 硬岩掘进机液压阀块设计方法[J]. 西南交通大学学报, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072
ZHANG Huailiang, ZHAO Lina, ZHOU Jingxing. Design Method of Hydraulic Valve Block for Tunnel Boring Machine[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072
Citation: ZHANG Huailiang, ZHAO Lina, ZHOU Jingxing. Design Method of Hydraulic Valve Block for Tunnel Boring Machine[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 52-59. doi: 10.3969/j.issn.0258-2724.20180072

硬岩掘进机液压阀块设计方法

doi: 10.3969/j.issn.0258-2724.20180072
基金项目: 国家重点基础研究发展计划(2013CB035400)
详细信息
    作者简介:

    张怀亮(1964—),男,教授,博士,研究方向为液压系统动力学,E-mail:zhl2001@csu.edu.cn

  • 中图分类号: TH137

Design Method of Hydraulic Valve Block for Tunnel Boring Machine

Funds: The National Basic Research Program of China (973 Program)
  • 摘要: 为了改善基础振动下液压阀块流道流通品质,基于有限元原理建立了基础振动下流道的仿真模型并验证了仿真模型的正确性;分析了基础振动下不同流道的布局方式,工艺孔结构参数,进出口流道长度对流道压降特性的影响;提出了基础振动下液压阀块的设计流程. 研究结果表明:基础振动下U型流道压降特性最好,Z型流道最差;U型流道工艺孔长度越短,流道压降平均值和压降波动越小;Z型流道工艺孔长度为3.5倍工艺孔直径,V型流道的工艺孔长度为3倍工艺孔直径时,流道压降平均值和压降波动较小;工艺孔直径略大于进出口流道直径时,有利于减小基础振动的影响;出口流道的长度在3倍出口流道直径以上时,有利于避免流道出口处于转弯后流场的恢复区. 新的设计方法能够有效减小阀块内流体压降大小,提高压力稳定性.

     

  • 图 1  典型流道

    Figure 1.  Typical flow channels

    图 2  流道的网格划分

    Figure 2.  Mesh of flow channels

    图 3  不同布局方式下的压降特性

    Figure 3.  Pressure drop characteristics under the different layout ways

    图 4  压降特性曲线与工艺孔长度的关系

    Figure 4.  Relationship between pressure drop characteristics and the length of fabrication hole

    图 5  压降特性曲线与工艺孔直径的关系

    Figure 5.  Relationship between pressure drop characteristics and the diameter of fabrication hole

    图 6  压降特性曲线与工艺孔冗余腔长度的关系

    Figure 6.  Relationship between pressure drop characteristics and the redundancy cavity length of fabrication hole

    图 7  不同出口长度处的速度云图

    Figure 7.  Velocity contour at different length of export

    图 8  试验系统

    Figure 8.  Experimental system

    图 9  无基础振动下流道流量-压降曲线

    Figure 9.  Flow-pressure drop curve of U-shaped and Z-shaped channel without foundation vibration

    图 10  基础振动下压降波动幅值

    Figure 10.  Fluctuation amplitude of pressure drop under foundation vibration

    图 11  基础振动下阀块的设计流程

    Figure 11.  Design flow of valve block under the foundation vibration

    图 12  液压推进系统原理

    Figure 12.  Schematic diagram of thrust hydraulic system

    图 13  油路布局

    Figure 13.  Flow channel layout

    图 14  阀块设计

    Figure 14.  Design of valve block

    表  1  流体介质参数

    Table  1.   Parameters of fluid

    介质类型密度/(kg•m – 3动力粘度/(kg•(m•s)−1热传导系数/(W•(m•k)−1比热容/(J•(kg•k)−1
    46号液压油8700.039 150.121 700
    下载: 导出CSV

    表  2  液压元件类型

    Table  2.   Types of hydraulic element

    标号名称型号
    3 比例调速阀 RPCED1-25/T3
    4 二位二通换向阀 DS3-TA23/10N
    5 比例溢流阀 RPCED10-350/10N-D24K1
    6 三位四通换向阀 DS3-S3/10N-D24K1
    下载: 导出CSV
  • LI X H, YU H B, YUAN M Z, et al. Study on the linear dynamic model of shield TBM cutterhead driving system[C]//IECON 2011: the 37th Annual Conference of the IEEE Industrial Electronics Society. [S.l.]: IEEE, 2011: 3864-3871.
    KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunneling and Underground Space Technology, 2003, 18(2): 145-159.
    ZHANG K, YU H, LIU Z, et al. Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions[J]. Simulation Modeling Practice and Theory, 2010, 18(7): 1019-1031. doi: 10.1016/j.simpat.2010.03.005
    陈炳瑞,冯夏庭,曾雄辉,等. 深埋隧洞TBM 掘进微震实时监测与特征分析[J]. 岩石力学与工程学报,2011,30(2): 275-283.

    CHEN Bingrui, FENG Xiating, ZENG xionghui, et al. Deep buried tunnel TBM tunneling microseismic monitoring and real-time characteristics analysis[J]. Journal of Rock Mechanics and Engineering, 2011, 30(2): 275-283.
    IBERALL A S. Attenuation of oscillatory pressures in instrument lines[J]. Journal of Research, National Bureau of Standards, 1950, 45(5): 85-108.
    BROWN F T. The transient response of fluid lines[J]. Journal of Fluids Engineering, 1962, 84(4): 547-553.
    TAYLOR A M, WHITE LAW J H. Curved ducts with strong secondary motion-velocity measurements of developing laminar and turbulent flow[J]. Journal of Fluids Engineering, 1982, 104(15): 350-359.
    万会雄,黄辉,黄海波. 超长液压管道压力损失的计算与试验分析[J]. 液压与气动,2009,86(10): 23-25. doi: 10.3969/j.issn.1000-4858.2009.10.008

    WAN Huixiong, HUANG Hui, HUANG Haibo. Super long hydraulic pipe pressure loss calculation and experimental analysis[J]. Journal of Hydraulic and Pneumatic, 2009, 86(10): 23-25. doi: 10.3969/j.issn.1000-4858.2009.10.008
    侯占勇. 混凝土泵泵送系统阀块流道的压力损失研究及优化[D]. 长沙: 中南大学, 2013.
    贺尚红,谭文成,何志勇. 复杂液压管网压力脉动特性建模与仿真[J]. 液压与气动,2012,62(9): 156-162.

    HE Shanghong, TAN Wencheng, HE Zhiyong. The modeling and simulation of complex hydraulic pipe network pressure pulsation characteristics[J]. Journal of Hydraulic and Pneumatic, 2012, 62(9): 156-162.
    CHAMBON R, CHEVALIER P M, DESCOTTE Y. An expert system for object placing in 3D space[J]. Computer Aided Engineering Journal, 1988(21): 51-59.
    CHAMBON R, TOLLENAERE M. Automated AI-based mechanical design of hydraulic manifold blocks[J]. Computer Aided Design, 1991, 23(3): 213-222. doi: 10.1016/0010-4485(91)90091-A
    TOLLENAERE M. Benefits of an object based approach for the development of an intelligent CAD system[J]. Proceedings Applications of Artificial Intelligence in Engineering, 1992(2): 127-135.
    田树军,李利,冯毅. 基于计算智能的液压集成块优化设计[J]. 中国机械工程,2003,14(17): 1492-1495. doi: 10.3321/j.issn:1004-132X.2003.17.017

    TIAN Shujun, LI Li, FENG Yi. Based on computational intelligence optimization design of hydraulic manifold blocks[J]. China Mechanical Engineering, 2003, 14(17): 1492-1495. doi: 10.3321/j.issn:1004-132X.2003.17.017
    田树军,张宏. 液压管路动态特性的 Simulink 仿真及其应用[J]. 系统仿真学报,2006,18(5): 1136-1138. doi: 10.3969/j.issn.1004-731X.2006.05.013

    TIAN Shujun, ZHANG Hong. The dynamic characteristics of hydraulic line Simulink simulation and its application[J]. Journal of System Simulation, 2006, 18(5): 1136-1138. doi: 10.3969/j.issn.1004-731X.2006.05.013
    张宏. 基于管网液流特性仿真的液压集成块优化设计[D]. 大连: 大连理工大学, 2006.
    张怀亮,彭玲,周井行. TBM液压阀块流道压降特性研究[J]. 华南理工大学学报(自然科学版),2017,45(9): 34-39, 66. doi: 10.3969/j.issn.1000-565X.2017.09.005

    ZHANG Huailiang, PENG Ling, ZHOU Jingxing. Research on pressure drop characteristics of the flow channel in hydraulic valve block for TBM[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(9): 34-39, 66. doi: 10.3969/j.issn.1000-565X.2017.09.005
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  255
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-23
  • 修回日期:  2018-09-18
  • 网络出版日期:  2018-10-10
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回