• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超高层建筑气动噪声场的大涡模拟

祝志文 邓燕华

祝志文, 邓燕华. 超高层建筑气动噪声场的大涡模拟[J]. 西南交通大学学报, 2019, 54(4): 748-756. doi: 10.3969/j.issn.0258-2724.20180066
引用本文: 祝志文, 邓燕华. 超高层建筑气动噪声场的大涡模拟[J]. 西南交通大学学报, 2019, 54(4): 748-756. doi: 10.3969/j.issn.0258-2724.20180066
ZHU Zhiwen, DENG Yanhua. Large Eddy Simulation of Aerodynamic Noise Field Around Super High-Rise Buildings[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 748-756. doi: 10.3969/j.issn.0258-2724.20180066
Citation: ZHU Zhiwen, DENG Yanhua. Large Eddy Simulation of Aerodynamic Noise Field Around Super High-Rise Buildings[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 748-756. doi: 10.3969/j.issn.0258-2724.20180066

超高层建筑气动噪声场的大涡模拟

doi: 10.3969/j.issn.0258-2724.20180066
基金项目: 国家重点基础研究发展计划资助项目(2015CB057702);国家自然科学基金资助项目资助(51278191)
详细信息
    作者简介:

    祝志文(1968—),男,教授,博士生导师,研究方向为结构抗风与钢桥疲劳,E-mail:zhuzw@stu.edu.cn

Large Eddy Simulation of Aerodynamic Noise Field Around Super High-Rise Buildings

  • 摘要: 为揭示超高层建筑气动噪声产生的机理及空间分布特征,利用大涡模拟,在大气边界层内求解超高层建筑绕流场,结合FW-H (Ffowcs Williams-Hawkings)方程的声类比法进行了超高层建筑周围声压场的数值模拟. 研究发现:超高层建筑每个面均是偶极子声源,气动噪声是由建筑表面的偶极子声源产生,且受建筑表面风压主导,顺流向和横风向的脉动压力分别主导相应方向的声场辐射强度; 气动噪声沿高度方向先增大后减小,在0.7倍建筑高度附近噪声达到最大值; 在相同高度和离建筑表面相同距离的不同空间点,当空间点面对建筑迎风面时总声压级最大、背风面次之,侧风面最小; 随着空间点与建筑距离的增大,空间点总声压级快速衰减,且横风向较顺风向衰减更快. 研究认为:大涡模拟和声类比相结合的方法能合理预测超高层建筑的气动噪声;优化气动外形,降低建筑表面风压是降噪的最有效途径.

     

  • 图 1  二维圆柱绕流计算域及边界条件

    Figure 1.  Computational domain and boundary conditions of flow around 2D circular cylinder

    图 2  噪声监测点设置

    Figure 2.  Arrangement of noise measuring points

    图 3  计算域网格划分分区布置

    Figure 3.  Computational domain partition and mesh arrangement

    图 4  计算域施加的边界条件

    Figure 4.  Imposed boundary conditions in computational domain

    图 5  噪声测点布置平面图

    Figure 5.  Plan arrangement of noise measuring points

    图 6  入口和模型处平均风速和湍流强度剖面

    Figure 6.  Profile of velocity and turbulence intensity at inlet and in model area

    图 7  建筑表面编号

    Figure 7.  Index of building surfaces

    图 8  建筑面声源产生的声场分布

    Figure 8.  Distribution of sound field produced by sound source on building surfaces

    图 9  测点总声压级及声场曲线的空间特性

    Figure 9.  Spatial characteristics of total sound pressure level at measuring points and sound field curve

    图 10  不同高度声场曲线

    Figure 10.  Curves of sound pressure at different heights

    图 11  测点总声压级的衰减曲线

    Figure 11.  Decay curve of total sound pressure level at measuring points

    表  1  测点总声压级计算结果与文献值比较

    Table  1.   Calculated total sound pressure at measuring points in comparison with reference results

    测点号1234
    文献[11] LES115.4109.3115.4109.1
    本文114.8105.5114.8105.9
    下载: 导出CSV
  • WANG M, MOIN P. Computation of trailing-edge flow and noise using large-eddy simulation[J]. Aiaa Journal, 2015, 38(12): 2201-2209.
    BROOKS T F, HODGSON T H. Trailing edge noise prediction from measured surface pressures[J]. Journal of Sound and Vibration, 1981, 78(1): 69-117. doi: 10.1016/S0022-460X(81)80158-7
    HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration, 1978, 61(3): 437-465. doi: 10.1016/0022-460X(78)90391-7
    HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33-45. doi: 10.1016/0889-9746(91)80010-B
    NISHIMURA M, GOTO T. Aerodynamic noise reduction by pile fabrics[J]. Fluid Dynamics Research, 2010, 42(1): 015003-1-015003-17. doi: 10.1088/0169-5983/42/1/015003
    KING W F, PFIZENMAIER E. An experimental study of sound generated by flows around cylinders of different cross-section[J]. Journal of Sound and Vibration, 2009, 328(3): 318-337. doi: 10.1016/j.jsv.2009.07.034
    LIGHTHILL M J. On sound generated aerodynamically Ⅱ. Turbulence as a source of sound[J]. Proceedings of the Royal Society of London, 1954, 222(1148): 1-32.
    Fluent I. FLUENT 6.1 user’s guide[M]. [S.l.]: Lebanon (NH) Fluent Inc., 2003: 634-644
    卢清华,陈宝. 基于LES方法的增升装置气动噪声特性分析[J]. 空气动力学报,2016,34(4): 448-454.

    LU Qinghua, CHEN Bao. Analysis of aeroacoustics characteristics of high lift device using LES method[J]. Acta Aerodynamica Sinica, 2016, 34(4): 448-454.
    WILLIAMS J E F, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences, 1969, 264(1151): 321-342. doi: 10.1098/rsta.1969.0031
    龙双丽,聂宏,詹家礼. 不同雷诺数下圆柱绕流气动噪声数值模拟[J]. 声学技术,2011,30(2): 111-116.

    LONG Shuangli, NIE Hong, ZHAN Jiali. Numerical simulation of aerodynamic noise of flow around a cylinder at different Reynolds number[J]. Acoustic Technology, 2011, 30(2): 111-116.
    张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社,2007: 55-75
    周大伟. 高层建筑风压风流场稳态与大涡模拟研究[D]. 上海: 同济大学, 2005
    祝志文, 邓燕华. 湍流积分尺度对高层建筑风荷载影响的大涡模拟[J]. 西南交通大学学报, 2018, 53(3): 86-94

    ZHU Zhiwen, DENG Yanhua. Investigation into effects of turbulence integral length on wind loads acting on tall buildings using large eddy simulation[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 86-94
    马大猷. 现代声学理论基础[M]. 北京: 学科出版社, 2004: 65-25
    刘敏,刘飞,胡亚涛,等. 三维串列双圆柱绕流气动流场及声场模拟[J]. 工程热物理,2008,9(3): 403-406. doi: 10.3321/j.issn:0253-231X.2008.03.011

    LIU Min, LIU Fei, HU Yatao, ea tl. Aerodynamics and aeroacoustics numerical simulation of flow past three circular cylinders in tandem arrangements[J]. Journal of Engineering Thermophysics, 2008, 9(3): 403-406. doi: 10.3321/j.issn:0253-231X.2008.03.011
    唐意. 高层建筑弯扭耦合风致振动及静力等效风荷载研究[D]. 上海: 同济大学, 2006
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  235
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-23
  • 修回日期:  2018-05-14
  • 网络出版日期:  2018-05-31
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回