Influence of Multiple Factors on Compressive Strength of Magnesium Oxychloride Cement Concrete
-
摘要: 为了解西部地区氯氧镁水泥混凝土的抗压强度以及田口方法在混凝土配合比中的适应性,针对活性MgO与MgCl2摩尔比、粉煤灰、耐水性改性剂和减水剂对氯氧镁水泥混凝土抗压强度的影响进行了研究,确定了各因素对氯氧镁水泥混凝土抗压强度的影响程度,并量化表征,提出了多因素共同作用氯氧镁水泥混凝土抗压强度信噪比的多元非线性回归模型. 研究结果表明,最优氯氧镁水泥混凝土28 d抗压强度设计组合为:摩尔比为5.4,不掺粉煤灰,耐水性改性剂为1%磷酸,减水剂为1%,各因素影响程度从大到小的顺序为:减水剂、粉煤灰、摩尔比、耐水性改性剂. 最优氯氧镁水泥混凝土长期抗压强度设计组合为:摩尔比为5.4,不掺粉煤灰,耐水性改性剂为2%磷肥,减水剂为1%,各因素影响程度从大到小的顺序为:摩尔比、粉煤灰、耐水性改性剂、减水剂.Abstract: The compressive strength of magnesium oxychloride cement concrete in western regions of China was studied. The adaptability of the Taguchi method in mix proportion design of concrete was also studied. The effects on the compressive strength of magnesium oxychloride cement concrete were studied utilizing the following variables: molar ratio of active MgO to MgCl2, fly ash, water resistance modifier, and the percent of water reducer. Through quantifiable characterization, the impact of these variables on the compressive strength of magnesium oxychloride cement concrete was determined. A multivariate nonlinear regression model was proposed to determine the signal-to-noise ratio of magnesium oxychloride cement concrete. When designing for the 28 day compressive strength, it was concluded that the optimum magnesium oxychloride cement concrete composition is as follows: molar ratio is 5.4, no fly ash, 1% phosphoric acid as a water resistance modifier, and 1% water reducing agent. The impact of the variables from largest to smallest is as follows: water reducer, fly ash, molar ratio, and percent of water resistance modifier. However, when designing for the long-term compressive strength, the optimal composition of magnesium oxychloride cement concrete is as follows: molar ratio is 5.4, no fly ash, 2% phosphate fertilizer as the water resistance modifier, and 1% water reducing agent. The impact of these variables also changes, and the effects in order from largest to smallest are: molar ratio, fly ash, water-resistant modifier, and water-reducing agent percentage.
-
表 1 轻烧氧化镁化学成分
Table 1. Chemical composition of light-burned magnesia
化学成分 MgO 活性
MgOSiO2 CaO 烧失量 其余 wB/% 90.0 48.6 3.2 1.1 3.8 1.9 表 2 工业氯化镁化学成分
Table 2. Chemical composition of industrial magnesium chloride
化学成分 MgCl2•6H2O K + Na CaCl2 SO42– 其余 wB/% 96.0 1.2 0.4 0.2 2.2 表 3 粉煤灰化学成分
Table 3. Chemical composition of fly ash
化学成分 SiO2 Al2O3 Fe2O3 CaO MgO SO3 烧失量 其余 wB/% 54.32 20.93 9.43 5.30 1.19 0.41 3.26 5.16 表 4 砂和石性能指标
Table 4. Sand and gravel performance indicators
材料 含泥量/% 表现密度/(kg•m–3) 松散堆积密度/(kg•m–3) 紧密堆积密度/(kg•m–3) 空隙率/% 含水率/% 砂 2.40 2 610 1 600 1 640 38.89 2.74 石 0.50 2 780 1 520 1 640 45.30 0.30 表 5 正交试验因素和水平
Table 5. Orthogonal factor and level
水平 摩尔比 粉煤灰/% 耐水性改性剂 减水剂/% 1 5.4 15 1% 磷酸 1.0 2 6.0 10 1% 磷酸 + 1%磷肥 2.0 3 6.6 0 2% 磷肥 3.5 表 6 正交表和28 d抗压强度的信噪比
Table 6. Orthogonal array and signal-to-noise ratio of 28 d compressive strength
编号 摩尔比 粉煤灰/% 耐水性改性剂/% 减水剂/% 抗压强度/MPa 信噪比/dB 试块1 试块2 试块3 1 5.4 15 1%磷酸 1.0 35.2 36.0 29.4 30.40 2 5.4 10 1%磷酸 + 1%磷肥 2.0 30.8 24.8 26.2 28.60 3 5.4 0 2%磷肥 3.5 28.4 23.2 22.8 27.76 4 6.0 15 1%磷酸 + 1%磷肥 3.5 15.0 18.2 19.0 24.67 5 6.0 10 2%磷肥 1.0 32.4 33.2 27.6 29.76 6 6.0 0 1%磷酸 2.0 25.4 27.0 30.0 28.72 7 6.6 15 2%磷肥 2.0 23.0 21.0 20.2 26.57 8 6.6 10 1%磷酸 3.5 22.4 26.4 26.8 27.94 9 6.6 0 1%磷酸 + 1%磷肥 1.0 37.0 31.6 31.8 30.42 $\overline {{K}}_1$ 28.92 27.21 29.02 30.19 $\overline {{K}}_2$ 27.72 28.77 27.90 27.96 $\overline {{K}}_3$ 28.31 28.97 28.03 26.79 极差 1.20 1.76 1.12 3.40 表 7 28 d抗压强度信噪比方差分析表
Table 7. Variance analyses for signal-to-noise ratio of 28 d compressive strength
因素 平方和 自由度 均方和 F P 贡献率/% 摩尔比 6.73 2 3.37 3.60 4.83 × 10–2 4.65 粉煤灰 17.83 2 8.91 9.54 1.49 × 10–3 15.28 耐水性改性剂 5.92 2 2.96 3.17 6.62 × 10–2 3.88 减水剂 57.17 2 28.59 30.61 1.62 × 10–6 52.94 误差 16.81 18 0.93 修正合计 104.46 26 表 8 正交表和长期抗压强度的信噪比
Table 8. Orthogonal array and signal-to-noise ratio of long-term compressive strength
编号 摩尔比 粉煤灰/% 耐水性改性剂/% 减水剂/% 抗压强度/MPa 信噪比/dB 试块1 试块2 试块3 1 5.4 15 1% 磷酸 1.0 50.74 47.16 50.82 33.89 2 5.4 10 1%磷酸 + 1%磷肥 2.0 44.49 40.67 40.07 32.38 3 5.4 0 2%磷肥 3.5 62.53 69.53 54.82 35.77 4 6.0 15 1%磷酸 + 1%磷肥 3.5 44.08 43.79 43.98 32.86 5 6.0 10 2% 磷肥 1.0 46.42 45.91 45.20 33.22 6 6.0 0 1%磷酸 2.0 42.90 38.85 49.06 32.67 7 6.6 15 2%磷肥 2.0 41.12 32.86 35.78 31.16 8 6.6 10 1%磷酸 3.5 29.92 29.83 25.10 28.94 9 6.6 0 1%磷酸 + 1%磷肥 1.0 45.41 39.82 37.89 32.19 $\overline {{K}}_1$ 34.01 32.64 31.83 33.10 $\overline {{K}}_2$ 32.92 31.51 32.48 32.07 $\overline {{K}}_3$ 30.76 33.54 33.38 32.52 极差 3.25 2.03 1.55 1.03 表 9 长期抗压强度信噪比方差分析表
Table 9. Variance analyses for signal-to-noise ratio for long-term compressive strength
因素 平方和 自由度 均方和 F P 贡献率/% 摩尔比 48.50 2 24.25 44.72 1.04 × 10–7 51.02 粉煤灰/% 19.28 2 9.64 17.78 5.47 × 10–5 19.58 耐水性改性剂 10.94 2 5.47 10.09 1.15 × 10–3 10.61 减水剂/% 4.45 2 2.22 4.10 3.41 × 10–2 3.62 误差 9.76 18 0.54 修正合计 92.93 26 -
ZHANG Xu, GE Shaojin, WANG Hongning, et al. Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement[J]. Construction and Building Materials, 2017, 150: 409-417. doi: 10.1016/j.conbuildmat.2017.05.211 宁亚瑜,张冷庆,丁向群. 基于正交优化设计研究氯氧镁水泥强度的影响因素[J]. 硅酸盐通报,2016,35(7): 2089-2093.NING Yayu, ZHANG Lengqing, DING Xiangqun. Influencing factors of MOC strength based on orthogonal optimization design[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2089-2093. 赵华,王永维,关博文,等. 粉煤灰对氯氧镁水泥早期性能的影响[J]. 材料导报,2015,29(18): 117-121,135.ZHAO Hua, WANG Yongwei, GUAN Bowen, et al. Effect of fly ash on early properties of magnesium oxychloride cement[J]. Materials Review, 2015, 29(18): 117-121,135. HE P P, CHI S P, TSANG D C W. Using incinerated sewage sludge ash to improve the water resistance of ragnesium oxychloride cement (MOC)[J]. Construction and Building Materials, 2017, 147: 519-524. doi: 10.1016/j.conbuildmat.2017.04.187 邓德华. MgO/MgCl2摩尔比对玻璃纤维氯氧镁水泥复合材料力学性能的影响[J]. 混凝土与水泥制品,2001(5): 35-37. doi: 10.3969/j.issn.1000-4637.2001.05.013DENG Dehua. Effect of MgO/MgCl2 mole ratios on the mechanic properties of glass fiber reinforced magenesium oxychloride cement composites[J]. China Concrete and Cement Products, 2001(5): 35-37. doi: 10.3969/j.issn.1000-4637.2001.05.013 DENG Dehua. The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement[J]. Cement and Concrete Research, 2003, 33(9): 1311-1317. doi: 10.1016/S0008-8846(03)00043-7 TAN Yanni, LIU Yong, GROVER L. Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial[J]. Cement and Concrete Research, 2014, 56: 69-74. doi: 10.1016/j.cemconres.2013.11.001 余红发. 镁水泥应用中新配料规则的理论与实践基础[J]. 菱镁砼信息,1993(4): 1-15.YU Hongfa. Theoretical and practical basis of new ingredients rules in the application of magnesium cement[J]. Magnesite Concrete Information, 1993(4): 1-15. 乔宏霞,刘尧,周茗如,等. 改性氯氧镁水泥砂石混凝土强度的试验研究[J]. 硅酸盐通报,2012,31(3): 636-640.QIAO Hongxia, LIU Yao, ZHOU Mingru, et al. Experimental investigation on strength development of modified magnesium oxychloride cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3): 636-640. MISRA A K, MATHUR R. Magnesium oxychloride cement concrete[J]. Bulletin of Materials Science, 2007, 30(3): 239-246. doi: 10.1007/s12034-007-0043-4 张纪阳,关博文,沙炯,等. 基于灰关联熵法的氯氧镁水泥混凝土强度影响因素分析[J]. 混凝土与水泥制品,2016(3): 21-24. doi: 10.3969/j.issn.1000-4637.2016.03.005ZHANG Jiyang, GUAN Bowen, SHA Jiong, et al. Analysis on the strength affecting factor of magnesium oxychloride cement concrete by grey relation[J]. China Concrete and Cement Products, 2016(3): 21-24. doi: 10.3969/j.issn.1000-4637.2016.03.005 POWER I M, DIPPLE G M, FRANCIS P S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials[J]. Cement and Concrete Composites, 2017, 78: 97-107. doi: 10.1016/j.cemconcomp.2017.01.003 李颖,余红发,董金美,等. 氯氧镁水泥的水化产物、相转变规律和抗水性评价方法的研究进展[J]. 硅酸盐学报,2013,41(11): 1465-1473.LI Ying, YU Hongfa, DONG Jinmei, et al. Reseach development on hydration product,phase transformation and water resistance evaluation method of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1465-1473. 郝贠洪,樊金承,邢永明,等. 田口方法下混凝土受盐冻循环和风沙侵蚀研究[J]. 建筑材料学报,2017,20(1): 124-129. doi: 10.3969/j.issn.1007-9629.2017.01.022HAO Yunhong, FAN Jincheng, XING Yongming, et al. Study of concrete under salt freeze-thaw cycles and wind-blown sand erosion by using Taguchi method[J]. Journal of Building Materials, 2017, 20(1): 124-129. doi: 10.3969/j.issn.1007-9629.2017.01.022 QIAO Hongxia, GONG Wei, SHI Yingying, et al. Experimental study of magnesium oxychloride cement concrete[J]. Emerging Materials Research, 2016, 5(2): 248-255. doi: 10.1680/jemmr.16.00012 刘斯凤,郭泗军,史翠平. 多因素对钢筋混凝土握裹力的影响及回归模型[J]. 建筑材料学报,2016,19(1): 162-165,203. doi: 10.3969/j.issn.1007-9629.2016.01.027LIU Sifeng, GUO Sijun, SHI Cuiping. Influence of multi-factors on bond strength of reinforced concrete and regression model[J]. Journal of Building Materials, 2016, 19(1): 162-165,203. doi: 10.3969/j.issn.1007-9629.2016.01.027
计量
- 文章访问数: 484
- HTML全文浏览量: 234
- PDF下载量: 14
- 被引次数: 0