• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

非平稳地震作用下高墩桥梁体间隙需求分析

李兰平 卜一之 贾宏宇 张明 李晰

李兰平, 卜一之, 贾宏宇, 张明, 李晰. 非平稳地震作用下高墩桥梁体间隙需求分析[J]. 西南交通大学学报, 2019, 54(1): 113-120. doi: 10.3969/j.issn.0258-2724.20180039
引用本文: 李兰平, 卜一之, 贾宏宇, 张明, 李晰. 非平稳地震作用下高墩桥梁体间隙需求分析[J]. 西南交通大学学报, 2019, 54(1): 113-120. doi: 10.3969/j.issn.0258-2724.20180039
LI Lanping, BU Yizhi, JIA Hongyu, ZHANG Ming, LI Xi. Analysis of Required Separation Distances of High-Pier Bridges Subjected to Non-stationary Ground Motions[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 113-120. doi: 10.3969/j.issn.0258-2724.20180039
Citation: LI Lanping, BU Yizhi, JIA Hongyu, ZHANG Ming, LI Xi. Analysis of Required Separation Distances of High-Pier Bridges Subjected to Non-stationary Ground Motions[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 113-120. doi: 10.3969/j.issn.0258-2724.20180039

非平稳地震作用下高墩桥梁体间隙需求分析

doi: 10.3969/j.issn.0258-2724.20180039
基金项目: 国家自然科学基金资助项目(51308465,51608452)
详细信息
    作者简介:

    李兰平(1986—),男,讲师,博士研究生,研究方向为桥梁抗震及结构动力学,E-mail: lilanping@swjtu.edu.cn

  • 中图分类号: V221.3

Analysis of Required Separation Distances of High-Pier Bridges Subjected to Non-stationary Ground Motions

  • 摘要: 为了研究非平稳地震作用下高墩桥梁体防撞间隙需求,基于随机振动理论及虚拟激励法,对不同烈度下场地条件对非平稳间隙需求的影响进行了分析. 首先,建立了非平稳地震作用下相邻梁体相对位移需求与烈度间的数学关系;其次,基于理论计算的梁体间最大相对位移,确定碰撞间隙宽度需求以达到防止梁体间发生碰撞的目的;最后,以某大跨度连续刚构-连续梁体系为实际工程算例,研究了非平稳地震作用下桥梁结构在一致场地和非一致场地(实际场地)条件下的碰撞间隙需求量,且获得了不同烈度下非平稳碰撞间隙需求谱. 研究结果表明:非平稳地震作用下,硬土场地条件时,相对位移时变均方差的峰值最小,实际场地条件最大,约为硬土场地的4倍;实际场地条件的各烈度下非平稳碰撞间隙宽度需求均值比软土场地、中土场地和硬土场地分别大36%、69%和73%,均方差分别大45%、74%和78%;平稳地震激励比非平稳地震激励时碰撞间隙需求量大20%~30%.

     

  • 图 1  铁路桥梁结构示意(单位:m)

    Figure 1.  Schematic view of the railway bridge (unit:m)

    图 2  相对位移时变均方差(7~9度)

    Figure 2.  Time-dependent mean square deviation of relative displacement (7–9度)

    图 3  相对位移时变均方差(10度)

    Figure 3.  Time-dependent mean square deviation of relative displacement (10度)

    图 4  间隙宽度需求量均值

    Figure 4.  Mean of required separation distance

    图 5  间隙宽度需求均方差

    Figure 5.  Mean square deviation of required separation distance

    表  1  3类场地类型参数

    Table  1.   Type parameters for three sites

    场地类型 ${\omega _{\rm{g}}}$ ${\xi _{\rm{g}}}$ ${\omega _{\rm{f}}}$ ${\xi _{\rm{f}}}$
    硬土 15.0 0.6 1.5 0.6
    中土 10.0 0.4 1.0 0.6
    软土 5.0 0.2 0.5 0.6
    下载: 导出CSV

    表  2  地震动强度比例因子

    Table  2.   Scale factor of ground motion intensity

    场地类型 烈度/度
    6 7 8 9 10
    硬土 3.69 14.77 59.08 236.31 945.13
    中土 3.97 15.89 63.53 254.07 1 016.17
    软土 5.22 20.87 83.45 333.76 1 334.86
    下载: 导出CSV

    表  3  墩底工况分析

    Table  3.   Analysis of pier bottom condition

    工况编号 烈度/度 1# 2# 3# 4# 5#
    6S 6 S S S S S
    6M 6 M M M M M
    6F 6 F F F F F
    6R 6 M S F M S
    7S 7 S S S S S
    7M 7 M M M M M
    7F 7 F F F F F
    7R 7 M S F M S
    8S 8 S S S S S
    8M 8 M M M M M
    8F 8 F F F F F
    8R 8 M S F M S
    9S 9 S S S S S
    9M 9 M M M M M
    9F 9 F F F F F
    9R 9 M S F M S
    10S 10 S S S S S
    10M 10 M M M M M
    10F 10 F F F F F
    10R 10 M S F M S
    下载: 导出CSV
  • 李乔, 赵世春. 汶川大地震工程震害分析[M]. 成都: 西南交通大学出版社, 2008: 18-27
    KAWASHIMA K, UNJOH S, HOSHIKUMA J, et al. Damage of bridges due to the 2010 Maule,Chile,earthquake[J]. Journal of Earthquake Engineering, 2011, 15(7): 1036-1068
    CHOUW N, HAO H. Pounding damage to buildings and bridges in the 22 February 2011 Christchurch earthquake[J]. International Journal of Protective Structures, 2012, 2(3): 123-140
    HE L, SHRESTHA B, HAO H, et al. Experimental and three-dimensional finite element method studies on pounding responses of bridge structures subjected to spatially varying ground motions[J]. Advances in Structural Engineering, 2017, 20(1): 105-124 doi: 10.1177/1369433216646009
    HAO H. A parametric study of the required seating length for bridge decks during earthquake[J]. Earthquake Engineering & Structural Dynamics, 2015, 27(1): 91-103
    RUANGRASSAMEE A, KAWASHIMA K. Relative displacement response spectra with pounding effect[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(10): 1511-1538
    白凤龙. 空间变化地震动激励下大跨度结构的反应研究[D]. 大连: 大连理工大学, 2010
    CHOUW N, HAO H. Significance of SSI and non-uniform near-fault ground motions in bridge response I:effect on response with conventional expansion joint[J]. Engineering Structures, 2008, 30(1): 141-153
    CHOUW N, HAO H. Significance of SSI and non-uniform near-fault ground motions in bridge response II:effect on response with modular expansion joint[J]. Engineering Structures, 2008, 30(1): 154-162
    李忠献,周莉,岳福青. 地震动空间效应与土-基础相互作用效应对隔震桥梁临界碰撞间隙的影响[J]. 土木工程学报,2010,43(7): 85-90

    LI Zhongxian, ZHOU Li, Yue Fuqiang. Effects of spatial variation of ground motion and siol-foundation interaction on critical pounding gap length of seismic isolated bridges[J]. Journal of Civil Engineering, 2010, 43(7): 85-90
    李忠献,岳福青,周莉,等. 基于随机振动理论确定桥梁地震碰撞的临界间隙[J]. 地震工程与工程振动,2006,26(4): 156-161

    LI Zhongxian, YUE Fuqing, ZHOU Li, et al. Determination of critical gap length of seismic pounding for bridges based on random vibration theory[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 156-161
    BI K, HAO H, CHOUW N. Influence of ground motion spatial variation,site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(9): 1027-1043
    贾宏宇,杜修力,李晰,等. 地震作用下高墩铁路桥梁梁体碰撞间隙宽度需求机理分析[J]. 工程力学,2017,34(2): 207-215

    JIA Hongyu, DU Xiuli, LI Xi, et al. Demand mechanism analysis on pounding separation distance of high pier railway bridges subjected to earthquake excitations[J]. Engineering Mechanics, 2017, 34(2): 207-215
    JIA H Y, ZHANG D Y, ZHENG S X, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations:Nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52(6): 55-69 doi: 10.1016/j.soildyn.2013.05.001
    RUIZ P, PENZIEN J. Probabilistic study of the behavior of structures during earthquake[Z]. University of California, Berkeley: Earthquake Engineering. Research Center, 1969
    ZHANG D Y, JIA H Y, ZHENG S X, et al. A highly efficient and accurate stochastic seismic analysis approach for structures under tridirectional nonstationary multiple excitations[J]. Computers & Structures, 2014, 145(C): 23-35
    LIN J, ZHAO Y, ZHANG Y. Accurate and highly efficient algorithms for structural stationary/non-stationary random responses[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1): 103-111 doi: 10.1016/S0045-7825(01)00247-X
    DAVENPORT A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Process Institute Civil Engineering, 2015, 28(2): 187-196
    江近仁,洪峰. 功率谱与反应谱的转换和人造地震波[J]. 地震工程与工程振动,1984,4(3): 1-11

    JIANG Jinren, HONG Feng. Conversion between power spectrum and response spectrum and artificial earthquakes[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(3): 1-11
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  212
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-03-14
  • 网络出版日期:  2018-07-29
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回