• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

复杂山区地形桥址区风特性的数值模拟

吴联活 张明金 李永乐 魏凯

吴联活, 张明金, 李永乐, 魏凯. 复杂山区地形桥址区风特性的数值模拟[J]. 西南交通大学学报, 2019, 54(5): 915-922. doi: 10.3969/j.issn.0258-2724.20180029
引用本文: 吴联活, 张明金, 李永乐, 魏凯. 复杂山区地形桥址区风特性的数值模拟[J]. 西南交通大学学报, 2019, 54(5): 915-922. doi: 10.3969/j.issn.0258-2724.20180029
WU Lianhuo, ZHANG Mingjin, LI Yongle, WEI Kei. Numerical Simulation of Wind Characteristics at Bridge Sites in Complex Mountainous Terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922. doi: 10.3969/j.issn.0258-2724.20180029
Citation: WU Lianhuo, ZHANG Mingjin, LI Yongle, WEI Kei. Numerical Simulation of Wind Characteristics at Bridge Sites in Complex Mountainous Terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922. doi: 10.3969/j.issn.0258-2724.20180029

复杂山区地形桥址区风特性的数值模拟

doi: 10.3969/j.issn.0258-2724.20180029
基金项目: 国家自然科学基金项目(51525804,51708464)
详细信息
    作者简介:

    吴联活(1993—),男,博士研究生,研究方向为桥梁风工程及桥梁水动力学, E-mail:wh_wu_lh@163.com

    通讯作者:

    张明金(1984—),男,讲师,博士,研究方向为桥梁风工程, E-mail:zhang108119@163.com

  • 中图分类号: U442

Numerical Simulation of Wind Characteristics at Bridge Sites in Complex Mountainous Terrains

  • 摘要: 为了研究复杂山区地形桥址区风场空间特性变化规律,以位于我国西南山区的绿汁江大桥为工程背景,利用FLUENT对山区地形风场特性进行数值模拟,通过36个风向工况的计算分析,得到复杂山区地形桥址区风场的空间分布特性. 结果表明:受复杂地形影响,各桥位平均风速风剖面曲线和沿主梁横桥向风速曲线差异较大,桥址区附近地形最高点以上400 m风场仍明显受地形影响;受河道大角度弯曲影响,桥址区形成类似“单向开口槽”的地形,顺河流风向的来流风受山体阻挡,各桥位处的风速低于逆河流风向,两个风向的风速差值的平均值达13.6 m/s,且各桥位风攻角以负攻角为主;峡谷突宽使谷内风场出现一定的分流,突宽区风速稍有减弱,风场的分流量有限,使得在渡过突宽段后的峡谷缩窄区,风速依旧较大.

     

  • 图 1  桥位布置平面

    Figure 1.  Floor plan of bridge layout

    图 2  三维地形模型及网格划分

    Figure 2.  Three-dimensional terrain model and meshing

    图 3  入口边界风速剖面

    Figure 3.  Wind velocity profile of entrance boundary

    图 4  风向工况示意

    Figure 4.  Sketch of wind direction cases

    图 5  4个桥位观测点位置示意

    Figure 5.  Layout of monitoring points at four bridges

    图 6  各桥位跨中位置横桥向风速沿高度分布

    Figure 6.  Transverse wind velocity profiles along height direction at the midspan of bridges

    图 7  各桥位横桥向风速沿主梁分布

    Figure 7.  Transverse wind velocity profiles along bridge axes

    图 8  2 643 m高程水平风速图

    Figure 8.  Vector illustration of horizontal wind speed at an elevation of 2 643 m

    图 9  桥位1跨中高程平面水平风速云图(工况34)

    Figure 9.  Horizontal wind velocity contour at the height of the midspan of bridge deck 1 (case 34 )

    图 10  各工况下横桥向平均风速玫瑰图(单位:m/s)

    Figure 10.  Rose diagram of average transverse wind velocity for all cases (unit: m/s)

    图 11  桥位1跨中高程平面对向工况水平风速云图

    Figure 11.  Horizontal wind velocity contour with opposite cases at the height of midspan of bridge deck 1

    图 12  顺河流与逆河流风向横桥向平均风速

    Figure 12.  Average transverse wind velocity in river downstream and upstream directions

    图 13  各工况下各桥位平均风攻角

    Figure 13.  Average wind attack angles for all cases

    图 14  桥位2跨中高程平面水平风速云图(工况35)

    Figure 14.  Horizontal wind velocity contour at the height of midspan of bridge deck 2 ( case 35 )

    图 15  各桥位沿主梁横桥向风速分布(工况35)

    Figure 15.  Transverse wind velocity profiles along bridge axes ( case 35 )

    表  1  桥梁设计参数表

    Table  1.   Bridge design parameters

    桥位 跨径/m 梁长/m 跨中标高/m 距谷底高度/m
    1 1 300 828 1 554.8 308.8
    2 750 699 1 560.0 318.0
    3 1 100 993 1 547.4 307.3
    4 1 120 966 1 575.6 333.6
    下载: 导出CSV
  • 李永乐,蔡宪棠,唐康,等. 深切峡谷桥址区风场空间分布特性的数值模拟研究[J]. 土木工程学报,2011,44(2): 116-122.

    LI Yongle, CAI Xiantang, Tang Kang, et al. Study of spatial distribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation[J]. China Civil Engineering Journal, 2011, 44(2): 116-122.
    陈万隆. 峡谷中风状况的分析[J]. 大气科学学报, 1979(增刊1): 29-34

    CHEN Wanlong. Analysis of wind conditions in the canyon[J]. Transactions of Atmospheric Sciences, 1979(S1): 29-34
    庞加斌,宋锦忠,林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报,2008,21(5): 39-44. doi: 10.3321/j.issn:1001-7372.2008.05.008

    PANG Jiabin, SONG Jinzhong, LIN Zhixing. Determination method for wind-resistant design wind speed of mountainous-valley bridge[J]. China Journal of Highway & Transport, 2008, 21(5): 39-44. doi: 10.3321/j.issn:1001-7372.2008.05.008
    ABDI D S, BITSUAMLAK G T. Wind flow simulations on idealized and real complex terrain using various turbulence models[J]. Advances in Engineering Software, 2014, 75(8): 30-41.
    BLOCKEN B, HOUT A V D, DEKKER J, et al. CFD simulation of wind flow over natural complex terrain:case study with validation by field measurements for Ria de Ferrol,Galicia,Spain[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 147: 43-57.
    肖仪清,李朝,欧进萍,等. 复杂地形风能评估的CFD方法[J]. 华南理工大学学报,2009,37(9): 30-35. doi: 10.3321/j.issn:1000-565X.2009.09.006

    XIAO Yiqing, LI Chao, OU Jinping, et al. CFD approach to evaluation of wind energy in complex terrain[J]. Journal of South China University of Technology, 2009, 37(9): 30-35. doi: 10.3321/j.issn:1000-565X.2009.09.006
    NOMURA T. Prediction of large-scale wind field over complex terrain by finite element method[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997(67/68): 947-948.
    DHUNNY A Z, LOLLCHUND M R, RUGHOOPUTH S D D V. Wind energy evaluation for a highly complex terrain using computational fluid dynamics (CFD)[J]. Renewable Energy, 2017, 101: 1-9.
    YAN B W, LI Q S. Coupled on-site measurement/CFD based approach for high-resolution wind resource assessment over complex terrains[J]. Energy Conversion & Management, 2016, 117: 351-366.
    WAN F, PORTÉ-AGEL F. A large-eddy simulation study of turbulent flow over multiscale topography[J]. Boundary-Layer Meteorology, 2011, 141(2): 201-217. doi: 10.1007/s10546-011-9648-7
    遆子龙,李永乐,廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学,2017,34(6): 73-81.

    TI Zilong, LI Yongle, LIAO Haili. Effect of ground surface roughness on wind field over bridge site with a gorge in mountainous area[J]. Engineering Mechanics, 2017, 34(6): 73-81.
    李永乐,遆子龙,汪斌,等. 山区Y形河口附近桥址区地形风特性数值模拟研究[J]. 西南交通大学学报,2016,51(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013

    LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013
    薛亚飞,刘志文. 复杂地形桥位风场空间分布特性数值模拟[J]. 公路交通科技,2016,33(5): 66-72. doi: 10.3969/j.issn.1002-0268.2016.05.011

    XUE Yafei, LIU Zhiwen. Numerical simulation of spatial distribution feature of wind field over bridge site at complex terrain[J]. Journal of Highway & Transportation Research & Development, 2016, 33(5): 66-72. doi: 10.3969/j.issn.1002-0268.2016.05.011
    于舰涵,李明水,廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报,2016,51(4): 654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008

    YU Jianhan, LI Mingshui, LIAO Haili. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008
    沈炼,韩艳,蔡春声,等. 山区峡谷桥址处风场实测与数值模拟研究[J]. 湖南大学学报,2016,43(7): 16-24. doi: 10.3969/j.issn.1674-2974.2016.07.003

    SHEN Lian, HAN Yan, CAI Chunsheng, et al. Experiment and numerical simulation for wind field of a long-span suspension bridge located in mountainous canyon[J]. Journal of Hunan University, 2016, 43(7): 16-24. doi: 10.3969/j.issn.1674-2974.2016.07.003
    王云飞,汪斌,李永乐. 水库蓄水对岖桥址风特性的影响[J]. 西南交通大学,2018,53(1): 95-101,145.

    WANG Yunfei, WANG Bin, LI Yongle. Influence of reservoir water storage on wind chavacteristics over bridge site in mountainous area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 95-101,145.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  248
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-12
  • 修回日期:  2018-05-16
  • 网络出版日期:  2018-12-21
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回