• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

海相黏土静力触探锥形因子影响因素研究

邱敏 姚爱国 邓国庆 王闫超

邱敏, 姚爱国, 邓国庆, 王闫超. 海相黏土静力触探锥形因子影响因素研究[J]. 西南交通大学学报, 2018, 53(6): 1220-1226. doi: 10.3969/j.issn.0258-2724.2018.06.018
引用本文: 邱敏, 姚爱国, 邓国庆, 王闫超. 海相黏土静力触探锥形因子影响因素研究[J]. 西南交通大学学报, 2018, 53(6): 1220-1226. doi: 10.3969/j.issn.0258-2724.2018.06.018
QIU Min, YAO Aiguo, DENG Guoqing, WANG Yanchao. Study of Influencing Factors on Cone Factor for Cone Penetration in Marine Clay[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1220-1226. doi: 10.3969/j.issn.0258-2724.2018.06.018
Citation: QIU Min, YAO Aiguo, DENG Guoqing, WANG Yanchao. Study of Influencing Factors on Cone Factor for Cone Penetration in Marine Clay[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1220-1226. doi: 10.3969/j.issn.0258-2724.2018.06.018

海相黏土静力触探锥形因子影响因素研究

doi: 10.3969/j.issn.0258-2724.2018.06.018
详细信息
    作者简介:

    邱敏(1988—),男,博士研究生,研究方向为岩土工程原位测试,E-mail: minqiu077@cug.edu.cn

  • 中图分类号: TU43

Study of Influencing Factors on Cone Factor for Cone Penetration in Marine Clay

  • 摘要: 为了研究土体刚度指数、应变软化和应变速率对海相黏土锥形因子的影响,利用有限元方法模拟了圆锥在黏土中的静力贯入,并采用任意拉格朗日-欧拉网格划分技术控制锥尖土体在大应变条件下的网格质量,讨论了稳定状态下传统小应变分析与大应变分析之间的差异性以及土体刚度指数对锥形因子与塑性区扩展的影响;引入土体应变软化参数和应变速率依赖性控制参数,分析了应变软化(灵敏度)和应变速率对锥形因子的影响,并建立了考虑土体刚度指数、应变软化和应变速率影响的锥形因子表达式. 结果表明:传统小应变分析会大大低估土体承载力,大应变极限承载力随着贯入深度的增大而增大,并在12DD为探头外径)深度处达到稳定状态;锥形因子与塑性区均随着刚度指数的增大而增大,锥尖附近塑性区的径向扩张更接近于球形孔扩张;土体灵敏度随着应变软化参数的减小而增大,锥形因子出现小幅度减小;随着应变速率控制参数的增大,锥形因子出现大幅增加,但增量与灵敏度无关;锥形因子表达式量化了刚度指数、应变软化和应变速率对海相黏土的影响,有助于利用静力触探技术更准确的评价海相黏土抗剪强度.

     

  • 图 1  模型边界条件与受力状态

    Figure 1.  Model boundary conditions and loading

    图 2  圆锥贯入前后模型网格

    Figure 2.  Model grid before and after cone penetration

    图 3  锥形因子随贯入深度变化散点图

    Figure 3.  Scatter diagram for cone factor versus penetration depth

    图 4  锥形因子随土体刚度指数变化曲线

    Figure 4.  Variation curves for cone factor versus rigidity index

    图 5  稳定状态下塑性范围(Ir分别为100、300、500)

    Figure 5.  Size of plastic zone in steady state (Ir = 100,300,500)

    图 6  归一化塑性区半径随土体刚度指数变化曲线

    Figure 6.  Variation curves for normalized plastic zone radius versus rigidity index

    图 7  真实土体与弹性-完全塑性材料近似应力-应变曲线

    Figure 7.  Stress-strain response for real material and elastic-perfectly plastic approximation

    图 8  应变-软化土体中锥形因子随贯入深度变化

    Figure 8.  Variation of cone factor with penetration in strain-softened soil

    图 9  锥形因子随应变软化参数变化

    Figure 9.  Variation of cone factor with strain-softening parameter

    图 10  锥尖土体偏应力云图

    Figure 10.  Contours of deviatoric stress around the cone

    图 11  应变软化与应变速率对锥形因子的影响

    Figure 11.  Influence of strain softening and strain rate dependency on cone factor

    表  1  应变软化土体特征参数

    Table  1.   Characteristic parameters for strain-softening in soil

    δrem A B C ${s_{{\rm{u min}}}}$
    0.86 0.05 10.54 245.10 0.004 30
    0.57 0.05 3.77 132.28 0.002 85
    0.38 0.05 1.93 101.63 0.001 90
    0.24 0.05 1.04 86.81 0.001 20
    0.13 0.05 0.51 77.88 0.000 65
    下载: 导出CSV
  • 邱延峻. 静力触探机理研究[J]. 西南交通大学学报,1993,28(3): 46-52

    QIU Yanjun. Study of the mechanism of static penetration[J]. Journal of Southwest Jiaotong University, 1993, 28(3): 46-52
    童立元,涂启柱,杜广印,等. 应用孔压静力触探(CPTU)确定软土压缩模量的试验研究[J]. 岩土工程学报,2013,35(2): 569-572

    TONG Liyuan, TU Qizhu, DU Guangyin, et al. Determination of confined compression modulus of soft clay using piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 569-572
    刘松玉, 蔡国军, 童立元, 等. 现代多功能CPTU: 技术理论与工程应用[M]. 北京: 科学出版社, 2013: 31-32
    BISHOP R F, HILL R, MOTT N F. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57(3): 7-8
    YU H S, MITCHELI J K. Analysis of cone resistance:review of methods[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 1998, 124(2): 140-149 doi: 10.1061/(ASCE)1090-0241(1998)124:2(140)
    VESIC A S. Design of pile foundations[S]. Washington D. C.: National Cooperative Highway Research Program, Synthesis of Highway Practice 42, Transportation Research Board, National Research Council, 1977
    LADANYI B, JOHNSTON G H. Behavior of circular footings and plate anchors embedded in permafrost[J]. Canadian Geotechnical Journal, 1974, 11: 531-553 doi: 10.1139/t74-057
    BALIGH M M. Theory of deep static cone penetration resistance[M]. Boston: Department of Civil and Environmental Engineering, MIT, 1975: 75-56
    BALIGH M M. Strain path method[J]. J. Geotech. Eng. ASCE, 1985, 111(9): 1108-1136 doi: 10.1061/(ASCE)0733-9410(1985)111:9(1108)
    LU Q, RANDOLPH M F, HU Y, et al. A numerical study of cone penetration in clay[J]. Geotechnique, 2004, 54(4): 257-67 doi: 10.1680/geot.2004.54.4.257
    WALKER J, YU H S. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotechnica, 2006, 1: 43-57 doi: 10.1007/s11440-006-0005-9
    TOLOOIYAN A, GAVIN K. Modelling the cone penetration test in sand using cavity expansion and arbitrary lagrangian eulerian finite element methods[J]. Computers and Geotechnics, 2011, 38(4): 482-490 doi: 10.1016/j.compgeo.2011.02.012
    EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991-2016 doi: 10.1002/(ISSN)1097-0207
    ZHOU H, RANDOLPH M F. Computational techniques and shear band development for cylindrical and spherical penetrometers in strain-softening clay[J]. International Journal of Geomechanics, 2007, 7(4): 287-97 doi: 10.1061/(ASCE)1532-3641(2007)7:4(287)
    LIYANAPATHIRANA D S. Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay[J]. Computers and Geotechnics, 2009, 36(5): 851-860 doi: 10.1016/j.compgeo.2009.01.006
    ABU-FARSAKH M, TUMAY M, VOYIADJIS G. Numerical parametric study of piezocone penetration test in clays[J]. International Journal of Geomechanics, 2003, 3(2): 170-181 doi: 10.1061/(ASCE)1532-3641(2003)3:2(170)
    YU H S, HERRMANN L R, BOULANGER R W. Analysis of steady state cone penetration in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(7): 594-605
    SILVESTRI V. Strain-rate effects in self-boring pressuremeter tests in clay[J]. Canadian Geotechnical Journal, 2006, 43(9): 915-27 doi: 10.1139/t06-047
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  180
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回