Research on Calibration Equipment for Multi-Range Earth Pressure Cell and Calibration Experimentation
-
摘要: 为了精确获取土压力测试数据,总结了土压力盒标定工装研究现状,指出了现有标定工装存在通用性问题. 针对多量程土压力盒标定,采用ABAQUS有限元软件建立了仿真模型,研究了承压板、标定桶的尺寸对土压力盒承压面受力的影响,基于提取的数据进行合理性分析,确定了标定试验工装的参数及尺寸,并采用重新装砂、单次加卸载和不扰动砂、重复完全加卸载两种方案分别对量程为0.3、0.6、1.0、2.0 MPa的土压力盒进行了标定对比试验. 结果表明:试验数据相关系数R2大于0.90,线性关联性较强,且试验组、对照组K值重复性较好,本次制定的工装可靠,试验数据正确合理,能够很好地标定多量程土压力盒;从重复加载、滞回性上分析,不扰动砂、重复完全加卸载方案数据相对稳定,建议该方案作为标定试验方案;砂标K1值小于厂标K2值,电阻应变式土压力盒在使用之前均要结合工程实际环境重新进行标定试验,以使参数更精确.Abstract: The general problems encountered in obtaining accurate soil pressure test-data are determined by performing a literature review of the research on calibration devices for soil pressure cells. Then, a finite element simulation for the calibration of multi-range soil pressure cell equipment is performed using ABAQUS, revealing how the sizes of bearing plates and calibration barrels affect the bearing surface stresses of the soil pressure cells. The extracted data are used to inform the performance of a rationality analysis to determine the key parameters and sizes of the relevant calibration equipment. On this basis, the single-load-recreating-the-sample scheme, and the cyclic-load-without-disturbing-sand scheme, are adopted to carry out the calibration on four soil pressure cells whose measured pressure ranges are 0.3, 0.6, 1.0 MPa, and 2.0 MPa. The results show that the correlation coefficient of the experimental data, R2, is greater than 0.90, showing strong linear correlation. The K values of both the experimental group and the control group have good repeatability, which means the test data is correct and reasonable, and the calibration equipment is reliable. As such, multi-range soil pressure cells can be calibrated effectively using this equipment. Analyzing the repeated loading and hysteresis loops indicates that the data from the cyclic-load-without-disturbing-sand scheme is relatively stable, supporting the recommendation of this scheme as the calibration test program. The test value K1 in the calibration of sandy soil is less than the factory value of K2; in order to improve the accuracy of the parameters, soil pressure cells of the resistance strain type should undergo a calibration test appropriate to their intended practical environment before use.
-
表 1 土压力盒参数
Table 1. Parameters of soil pressure cell
参数 土压力盒编号 Ⅰ、Ⅱ Ⅲ、Ⅳ Ⅴ、Ⅵ Ⅶ、Ⅷ 量程/MPa 0.3 0.6 1.0 2.0 土压力盒外径/mm 118 118 118 118 油囊外径/mm 105 105 105 105 土压力盒厚度/mm 31.7 32.2 32.7 33.5 表 2 模型物理力学参数
Table 2. Physical and mechanical parameters of the model
部件 弹性模量
/Pa泊松比 摩擦角
/(°)粘聚力
/kPa密度
/(kg•m–3)标准砂 16 × 107 0.3 40 3 1 950 标定桶 2 × 1011 0.2 ― ― 7 800 表 3 承压板直径及工况
Table 3. Diameter and working condition of the bearing plate
工况 量程/MPa 土压力盒编号 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ 1 0.3 12 14 16 18 20 22 24 26 28 30 32 2 0.6 3 1.0 4 2.0 表 4 各土压力盒砂标参数
Table 4. The soil calibration parameters of each soil pressure cell
组号 工况 量程/MPa 编号 砂标标定系数K1 相关系数 拟合公式 厂标标定系数K2 K1/K2/% 1 1 0.3 Ⅰ 0.136 8 0.998 86 y = (1.368 × 10–4)x – 0.004 25 0.000 137 6 99.4 Ⅱ 0.145 3 0.999 68 y = (1.453 × 10–4)x – 0.001 88 0.000 148 0 98.2 2 2 0.6 Ⅲ 0.268 1 0.994 47 y = (2.681 × 10–4)x + 0.021 94 0.000 321 0 83.4 Ⅳ 0.242 1 0.995 25 y = (2.421 × 10–4)x + 0.018 6 0.000 288 0 84.1 3 3 1.0 Ⅴ 0.262 1 0.994 49 y = (2.621 × 10–4)x + 0.057 2 0.000 563 0 46.6 Ⅵ 0.270 6 0.993 70 y = (2.706 × 10–4)x + 0.059 4 0.000 579 0 46.7 4 4 2.0 Ⅶ 0.580 1 0.968 47 y = (5.801 × 10–4)x + 0.265 17 0.001 238 0 46.8 Ⅷ 0.378 0 0.974 18 y = (3.78 × 10–4)x + 0.248 01 0.001 163 0 47.1 表 5 方案1、2砂标标定系数对比
Table 5. Contrasting soil calibration parameters between scheme (1) and scheme (2)
方案 标定系数 土压力盒编号 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ 1 K1 1.368 29 1.452 65 2.681 25 2.421 36 2.621 16 2.706 26 5.800 66 3.780 38 2 加载1 1.369 13 1.454 75 2.682 47 2.423 49 2.434 35 2.700 56 5.554 95 3.781 48 加载2 1.370 25 1.457 23 2.693 72 2.435 07 2.406 87 2.696 86 5.530 55 2.962 33 加载3 1.373 09 1.459 82 2.704 51 2.439 96 2.400 43 2.686 26 5.238 66 2.770 82 -
刘宝有. 土压力传感器国外理论和实验研究概况[J]. 传感器技术,1988(2): 48-53, 56LIU Baoyou. General situation of foreign theoretical and experimental research on earth pressure sensor[J]. Joural of Transducer Technology, 1988(2): 48-53, 56 廖波,周檀君,季雨坤. 薄膜式土压力分布传感器研发及试验研究[J]. 传感技术学报,2018,31(1): 19-24LIAO Bo, ZHOU Tanjun, JI Yukun. Experimental research and development of thin-film soil pressure distribution sensor[J]. Chinese Journal of Sensors and Actuators, 2018, 31(1): 19-24 任连伟,肖扬,顾红伟. 砂土介质中多类型土压力盒标定试验[J]. 河海大学学报(自然科学版),2016,44(2): 155-159REN Lianwei, XIAO Yang, GU Hongwei. Experimental study on calibration tests of earth pressure cells in sand soil[J]. Journal of Hohai University (Natural Sciences), 2016, 44(2): 155-159 刘宝有. 电阻应变式土压力传感器土中标定的试验研究[J]. 传感器技术,1987(4): 6-13LIU Baoyou. Experimental study on the calibration of resistance strain earth pressure sensor[J]. Sensor Technology, 1987(4): 6-13 THEROUX B, LABUZ J F, DRESCHER A. Calibration of an earth pressure cell[J]. Center for Transportation Studies, 2000(34): 2-6 TIMMONS J, CHO Y M, TOWNSEND T, et al. Total earth pressure cells for measuring loads in a municipal solid waste landfill[J]. Geotechnical & Geological Engineering, 2012, 30(1): 95-105 郑淑艳. 土压力盒标定方法的探讨[J]. 公路交通科技: 应用技术版,2013(1): 236-238ZHENG Shuyan. Discussion on the calibration method of soil pressure cell[J]. Highway Traffic Science and Technology: Application Technology Edition, 2013(1): 236-238 蒋明杰,朱俊高,沈靠山,等. 土压力盒标定方法研究[J]. 河北工程大学学报(自然科学版),2015,32(3): 5-8JIANG Mingjie, ZHU Jungao, SHEN Kaoshan, et al. Research of methods of pressure cell calibration[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2015, 32(3): 5-8 HUNTLEY S A, VALSANGKAR A J. Laboratory thermal calibration of contact pressure cells installed on[J]. Canadian Geotechnical Journal, 2016, 53(6): 1013-1025 张彬, 王钊, 杨俊峰, 等. 土压力盒在工程应用中的误差分析[J]. 探矿工程 (岩土钻掘工程), 2005(增刊1): 157-161ZHANG Bin, WANG Zhao, YANG Junfeng, et al. Error analyses of application of earth pressure cell in geotechnical engineering[J]. Prospecting Engineering (Rock and Soil Drilling and Excavation Engineering), 2005(Sup.1): 157-161 韦四江,王大顺,郜进海,等. 微型土压力盒的标定及修正[J]. 地下空间与工程学报,2009,5(5): 1003-1006WEI Sijiang, WANG Dashun, HAO Jinhai, et al. Calibration and correction of miniature earth pressure cell[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(5): 1003-1006 陶亚萍. 不同粒径的河砂和机制砂对土压力盒的影响[J]. 河南城建学院学报,2015,24(6): 51-54TAO Yaping. Effect of river sand and machine-made sand withdifferent size on earth pressure cell[J]. Journal of Henan University of Urban Construction, 2015, 24(6): 51-54 杨钰. 浅谈土压力盒的埋置方法[J]. 山西建筑,2008,34(31): 103-104YANG Yu. A brief talk on the method of embedment of earth pressure cell[J]. Shanxi Architecture, 2008, 34(31): 103-104 陈春红,刘素锦,王钊. 土压力盒的标定[J]. 中国农村水利水电,2007(2): 29-32CHEN Chunhong, LIU Sujin, WANG Zhao. Calibration of earth pressure cell[J]. China Rural Water Conservancy and Hydropower, 2007(2): 29-32 张胜利. 土压力传感器与土介质相互作用特性分析[D]. 成都: 西南交通大学, 2010 殷学国. 土压力盒标定工装设计和参数试验研究[J]. 路基工程,2017(1): 107-113YIN Xueguo. Calibration tooling design and parameter experimental study on earth pressure cell[J]. Subgrade Engineering, 2017(1): 107-113 杨邦强. 特种荷载作用下铁路轨道路基试验研究[D]. 成都: 西南交通大学, 2017 周少辉,蔡良才,许巍,等. 拼装式铝道面板下土基变形预测模型[J]. 西南交通大学学报,2016,51(4): 684-689ZHOU Shaohui, CAI Liangcai, XU Wei, et al. Soil deformation prediction beneath aluminum matting systems[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 684-689