Analysis of LRB-DSB Three Dimensional Isolation System’s Isolating Effect
-
摘要: 为研究叠层橡胶支座-碟形弹簧支座(LRB-DSB)串联组合式三维隔震系统的隔震效果,对LRB-DSB三维隔震系统之构成、原理和设计理论进行综合分析;结合算例,运用整体结构法对基于LRB-DSB的三维隔震结构、基于LRB的水平隔震结构和非隔震结构的动力特性及其在三维地震激励下的动力响应进行对比. 结果表明:LRB-DSB三维隔震系统的竖向刚度较LRB水平隔震系统适当降低,基于LRB-DSB的三维隔震结构的竖向自振周期可较基于LRB的水平隔震结构和非隔震结构延长1.2倍;基于LRB-DSB的三维隔震结构在水平向和竖向均能起到良好的隔震效果,弥补了基于LRB的隔震结构仅能起到水平隔震效能的不足.Abstract: In order to study the isolating effect of the three dimensional laminated rubber bearings-dish spring bearing (LRB-DSB) isolation system, comprehensive analyses for its construction, mechanism, and design theory were performed. On the basis of these analyses, comparative studies of the vibration characteristics and the dynamic response under three dimensional seismic excitation of the three dimensional base of the isolated structure based on LRB-DSB, horizontal isolation structure based on the LRB, and general seismic structure were conducted. The results showed that, in comparison with the LRB horizontal isolation system, the vertical stiffnesses of the three dimensional LRB-DSB isolation systems are properly descended, and the vertical vibration period can be extended by 120%. The LRB isolation system demonstrates good horizontal isolation capacity, but has no vertical isolation effect; it may even amplify any vertical seismic action on the structure. The three dimensional LRB-DSB isolation system can suitably make up for these deficiencies by isolating both the horizontal and vertical effects well.
-
表 1 LRB-DSB三维隔震装置的主要性能参数
Table 1. Main performance parameters of LRB-DSB three-dimensional isolation equipment
类型编号 水平隔震部件LRB 竖向隔震部件DSB KV1 Keq Ku Qd Kd KV2 C α h0/δ dV,max L-D-1 1525 0.79 — — — 72.6 500 0.2 0.3 45 L-D-2 1839 1.46 8.08 62.6 0.81 87.6 500 0.2 0.3 45 表 2 选取的地震波
Table 2. Selected ground motions
地震波 地震事件 时间 地点 震中距/km N194 WEBER地震 1990年 新西兰 12.6 PER19 LIMA地震 1974年 秘鲁 17.2 U2545 COYOTELAKE地震 1979年 美国 15.7 表 3 结构基本周期
Table 3. Structures’ translational periods
方向 SRS HIS 3DIS X 1.290 3.085 3.081 Y 1.269 3.849 3.779 Z 0.161 0.167 0.378 表 4 隔震层的最大位移
Table 4. Maximum displacement of isolation layer
地震波 HIS 3DIS 水平向 竖向 水平向 竖向 N194 98.6 3.7 91.8 35.3 PER19 133.5 3.8 135.1 34.8 U2545 92.3 3.4 93.2 35.1 -
周锡元,阎维明,杨润林. 建筑结构的隔震、减振和振动控制[J]. 建筑结构学报,2002,23(2): 2-12ZHOU Xiyuan, Yan Weiming, Yang Runlin. Seismic base isolation,energy dissipation and vibration control of building structures[J]. Journal of Building Structure, 2002, 23(2): 2-12 朱宏平,周方圆,袁涌. 建筑隔震结构研究进展与分析[J]. 工程力学,2014,31(3): 1-10ZHU Hongping, ZHOU Fangyuan, YUAN Yong. Development and analysis of the research on base isolated structures[J]. Engineering Mechanics, 2014, 31(3): 1-10 潘毅, 李家佳, 季晨龙. 隔震技术在灾后重建中的应用案例[J].建筑结构, 2012, 42(增刊1): 534-537PAN Yi, LI Jiajia, JI Chenlong. Application case using seismic isolation technology in post-disaster reconstruction[J]. Building Structure, 2012, 42(Sup.1): 534-537 潘毅,王子超,尚枫,等. 四川省某砖石古塔隔震加固方案研究[J]. 西南交通大学学报,2018,53(3): 540-547PAN Yi, WANG Zichao, SHANG Feng, et al. Study on isolated reinforcement scheme of ancient masonry pagoda in Sichuan Province[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 540-547 郭阳照, 潘毅, 吴体, 等. 新型内置挤压铅消能件竖向隔震墩的设计原理与减震性能分析[J]. 土木工程学报, 2016, 49(增刊1): 119-124GUO Yangzhao, PAN Yi, WU Ti, et al. Design principle and seismic performance analysis of a vertical isolation pier with lead extrusion damping component[J]. China Civil Engineering Journal, 2016, 49(Sup.1): 119-124 MASAKI M, KAZUHIKO I, TAKAFUMI F. Development of three dimensional seismic isolation systems for fast reactor application[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4(3): 305-310 江赛雄, 唐丽娜, 潘毅. 弹簧隔振技术在火力发电厂中的应用现状[J]. 土木建筑与环境工程, 2015, 37(增刊1): 84-87JIANG Saixiong, TANG Li’na, PAN Yi. Application status of spring vibration isolation technology in thermal power plane[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(Sup.1): 84-87 卢立恒, 徐赵东, 潘毅, 等. 多维地震激励下工程结构隔减震技术研究进展[J]. 土木工程学报, 2013, 46(增刊1): 1-6LU Liheng, XU Zhaodong, PAN Yi, et al. State of structural isolation and mitigation technology under multi-dimensional excitations[J]. China Civil Engineering Journal, 2013, 46(Sup.1): 1-6 潘毅,季晨龙,卢立恒,等. 地震动频谱特性对基础隔震结构双向地震响应的影响[J]. 土木工程学报,2013,46(5): 49-55PAN Yi, JI Chenlong, LU Liheng, et al. Effects of ground motion characteristics on bilateral seismic responses of base-isolated structures[J]. China Civil Engineering Journal, 2013, 46(5): 49-55 潘毅,季晨龙,韩徐扬,等. 隔震支座主要参数对基础隔震结构双向地震响应的影响[J]. 土木建筑与环境工程,2014,36(4): 28-35PAN Yi, JI Chenlong, HAN Xuyang, et al. Effects of ground motion characteristics on bilateral seismic responses of base-isolated structures[J]. China Civil Engineering Journal, 2014, 36(4): 28-35 谢俊举,温增平. 2008年汶川地震近断层竖向与水平向地震动特征[J]. 地球物理学报,2010,53(8): 1796-1805XIE Junju, WEN Zengping. Characteristics of near-fault vertical and horizontal ground motion from the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(8): 1796-1805 ELGAMAL A, HE L. Vertical earthquake ground motion records:an overview[J]. Journal of Earthquake Engineering, 2004, 8(5): 663-697 WEI Lushun, ZHOU Fulin, TAN Ping, et al. Research and application on three-dimensional seismic and vibration isolation for building[J]. Journal of Harbin Institute of Technology, 2011, 18(1): 62-66 潘毅,谢丹,袁双,等. 尼泊尔8.1级地震文化遗产建筑震害调查与分析[J]. 西南交通大学学报,2015,50(6): 1039-1046PAN Yi, Xie Dan, Yuan Shuang, et al. Investigation and analysis of seismic damage to cultural heritage buildings induced by Gorkha Earthquake,Nepal[J]. Journal of Southwest Jiaotong University, 2015, 50(6): 1039-1046 李平,薄景山,袁一凡,等. 汶川地震中九襄断裂对汉源烈度异常的影响[J]. 西南交通大学学报,2015,50(6): 1055-1060LI Ping, BO Jingshan, YUAN Yifan, et al. Effects of Jiuxiang fracture on abnormal intensity in Hanyuan during Wenchuan Earthquake[J]. Journal of Southwest Jiaotong University, 2015, 50(6): 1055-1060 中华人民共和国住建部. 建筑抗震设计规范: GB50011—2010[S]. 北京: 中国建筑工业出版社, 2011 熊世树. 三维基础隔震系统的理论与试验研究[D]. 武汉: 华中科技大学, 2004