• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢套管再生混凝土加固柱轴压试验

何岸 蔡健 陈庆军 薛华 左志亮 汤序霖 黎凯宇

何岸, 蔡健, 陈庆军, 薛华, 左志亮, 汤序霖, 黎凯宇. 钢套管再生混凝土加固柱轴压试验[J]. 西南交通大学学报, 2018, 53(6): 1187-1194, 1204. doi: 10.3969/j.issn.0258-2724.2018.06.014
引用本文: 何岸, 蔡健, 陈庆军, 薛华, 左志亮, 汤序霖, 黎凯宇. 钢套管再生混凝土加固柱轴压试验[J]. 西南交通大学学报, 2018, 53(6): 1187-1194, 1204. doi: 10.3969/j.issn.0258-2724.2018.06.014
HE An, CAI Jian, CHEN Qingjun, XUE Hua, ZUO Zhiliang, TANG Xulin, LI Kaiyu. Axial Compressive Experiment on Steel-Jacket Retrofitted Column with Recycled Aggregate Concrete[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1187-1194, 1204. doi: 10.3969/j.issn.0258-2724.2018.06.014
Citation: HE An, CAI Jian, CHEN Qingjun, XUE Hua, ZUO Zhiliang, TANG Xulin, LI Kaiyu. Axial Compressive Experiment on Steel-Jacket Retrofitted Column with Recycled Aggregate Concrete[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1187-1194, 1204. doi: 10.3969/j.issn.0258-2724.2018.06.014

钢套管再生混凝土加固柱轴压试验

doi: 10.3969/j.issn.0258-2724.2018.06.014
详细信息
    作者简介:

    何岸(1989—),男,博士研究生,研究方向为钢-混组合结构、结构加固,电话:020-87114801,E-mail: an.he@mail.scut.edu.cn

    通讯作者:

    左志亮(1982—),男,副教授,博士,研究方向为钢-混凝土组合结构,电话:020-87114801,E-mail: ctzlzuo@scut.edu.cn

  • 中图分类号: TU311

Axial Compressive Experiment on Steel-Jacket Retrofitted Column with Recycled Aggregate Concrete

  • 摘要: 为实现建筑业节能减排的目标,提出了钢套管再生混凝土加固柱的新加固方法,对1个未加固柱、12个钢套管再生混凝土加固柱以及2个钢管混凝土柱进行轴压试验,并对试件的承载力和变形特点进行分析,并讨论了该加固柱的承载力计算方法.研究结果表明:加固后试件的承载力提高2.19~3.98倍,且加固柱的刚度、延性均比原柱有明显提高;钢套管再生混凝土加固柱的承载力为钢套管普通混凝土加固柱承载力的91.8%~97.0%;当填充再生混凝土强度由27.0 MPa增加到32.9 MPa时,加固柱的承载力仅提高2.67%;对于再生粗骨料取代率为50%的试件,当钢套管厚度由1.81 mm增加到3.84 mm和5.84 mm时,承载力分别提高了34.0%和77.8%;考虑原柱初始应力后,试件峰值应变减小47.1%~59.3%;钢套管加固柱与钢管混凝土柱具有类似的受力性能.采用不同规范计算试件的承载力,结果表明EC4规范公式的计算精度最高,稳定性最佳.

     

  • 图 1  钢套管再生混凝土加固柱截面

    Figure 1.  Sections of the steel-jacket retrofitted columns with recycled aggregate concrete

    图 2  试件样图

    Figure 2.  Details of the specimen

    图 3  带初始应力试件施工图

    Figure 3.  Construction of the specimen with preload

    图 4  加载及量测方案

    Figure 4.  Test set-up and instrumentation

    图 5  试件破坏形态

    Figure 5.  Failure modes

    图 6  荷载-轴向平均应变曲线

    Figure 6.  Load versus average longitudinal strain curves

    图 7  归一化的荷载-轴向平均应变曲线

    Figure 7.  Non-dimensional load versus average longitudinal strain curves

    图 8  试件A3钢管和钢筋的荷载(P)-应变(ε)曲线

    Figure 8.  Load(P)-strain(ε) curves for steel tube and bars of specimen A3

    表  1  试件参数及试验结果

    Table  1.   Parameters and experimental results of the specimen

    编号 t/mm l/cm η/% Ppre/kN fc1/MPa fc2/MPa Ec/MPa 钢管滑移线 Ps/kN Pu/kN Ps/Pu εb Pu/Pu-A0
    A0 100 34.2 1 512 1.00
    A1 3.84 100 0 0 34.2 29.8 29 029 较明显 4 855 4 941 0.98 0.020 0 3.27
    A2 3.84 100 25 0 34.2 28.3 27 226 较明显 4 382 4 547 0.96 0.024 8 3.01
    A3 3.84 100 50 0 34.2 27.0 26 605 较明显 4 527 4 538 1.00 0.020 2 3.00
    A4 3.84 100 75 0 34.2 26.9 25 367 较明显 4 520 4 793 0.94 0.026 7 3.17
    A5 3.84 100 100 0 34.2 24.7 17 214 较明显 4 223 4 661 0.91 0.028 8 3.08
    A6 3.84 100 50 0 34.2 32.9 26 619 较明显 4 340 4 659 0.93 0.028 5 3.08
    A7 3.84 130 25 125 34.2 33.7 28 561 不明显 4 682 0.010 0 3.10
    A8 3.84 130 25 316 34.2 33.7 28 561 不明显 4 868 0.008 0 3.22
    A9 1.81 100 0 0 34.2 30.4 29 029 最明显 3 213 3 309 0.97 0.014 2 2.19
    A10 5.84 100 0 0 34.2 30.4 29 029 不明显 6 003 0.032 0 3.97
    A11 1.81 100 50 0 34.2 28.2 26 605 最明显 3 220 3 386 0.95 0.010 8 2.24
    A12 5.84 100 50 0 34.2 28.2 26 605 不明显 6 021 0.029 0 3.98
    E1 3.84 100 100 0 23.7 较明显 4 207 4 217 1.00 0.015 2 2.79
    E2 3.84 100 0 0 43.6 较明显 5 400 5 522 0.98 0.010 2 3.65
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mixing proportions of the concrete

    试件 设计强度 η/% 水灰比 砂率 水/kg 水泥/kg 砂/kg 天然骨料/kg 再生骨料/kg
    A1、A9、A10、E2、 C30 0 0.49 0.37 205 422 633 1079 0
    A2、A7、A8 C30 25 0.49 0.37 230 422 634 809 270
    A3、A11、A12 C30 50 0.49 0.37 256 422 634 540 540
    A4 C30 75 0.49 0.37 281 422 634 270 810
    A5、E1 C30 100 0.49 0.37 306 422 634 0 1080
    A6 C35 50 0.42 0.37 254 484 615 523 523
      注:由于搅拌机容量限制,不同批次搅拌的混凝土强度存在差异,各试件的混凝土强度实测值见表1.
    下载: 导出CSV

    表  3  钢材力学性能指标

    Table  3.   Material properties of the steel

    指标 钢筋 Ф6 钢筋 Ф12 预应力
    钢筋 Ф32
    钢管厚度/mm
    1.81 3.84 5.84
    fy/MPa 375 435 432 400 356
    fu/MPa 593 654 570 550 509
    Es/GPa 182.4 150.2 169.5 220.6 183.8 173.4
    下载: 导出CSV

    表  4  各国规范承载力计算结果对比

    Table  4.   Comparisons of the results predicted by design codes

    数据
    来源
    试件
    编号
    套箍
    系数ξ
    试验
    结果Pu/kN
    JCJ01—89 CECS28—2012 Eurocode 4 AIJ-CFT ANSI/AISC 文献[9]公式
    Pcal
    /kN
    Pcal
    /Pu
    Pcal
    /kN
    Pcal
    /Pu
    Pcal
    /kN
    Pcal
    /Pu
    Pcal
    /kN
    Pcal
    /Pu
    Pcal
    /kN
    Pcal
    /Pu
    Pcal
    /kN
    Pcal
    /Pu
    本文 A1 0.809 4 941 5 042 1.020 5 446 1.102 4 651 0.941 3 994 0.808 3 601 0.729 5 646 1.143
    A2 0.835 4 623 5 080 1.099 5 528 1.196 4 679 1.012 4 000 0.865 3 606 0.780 5 744 1.242
    A3 0.836 4 537 4 991 1.100 5 369 1.183 4 594 1.013 3 962 0.873 3 540 0.780 5 620 1.239
    A4 0.853 4 793 4 861 1.014 5 279 1.101 4 479 0.934 3 837 0.801 3 463 0.723 5 403 1.127
    A5 0.818 4 738 4 879 1.030 5 064 1.069 4 485 0.947 3 971 0.838 3 449 0.728 5 478 1.156
    A6 0.780 4 660 5 088 1.092 5 513 1.183 4 705 1.010 4 024 0.864 3 662 0.786 5 658 1.214
    A7 0.772 4 682 5 119 1.093 5 546 1.185 4 736 1.012 4 050 0.865 3 689 0.788 5 694 1.216
    A8 0.772 4 868 5 056 1.039 5 472 1.124 4 681 0.962 4 005 0.823 3 652 0.750 5 588 1.148
    A9 0.405 3 310 3 653 1.104 3 905 1.180 3 490 1.054 2 986 0.902 2 826 0.854 3 492 1.055
    A10 1.115 6 003 5 881 0.980 6 534 1.088 5 496 0.916 4 731 0.788 4 138 0.689 7 383 1.230
    A11 0.419 3 387 3 618 1.068 3 872 1.143 3 445 1.017 2 949 0.871 2 780 0.821 3 466 1.023
    A12 1.151 6 021 5 919 0.983 6 600 1.096 5 529 0.918 4 758 0.790 4 141 0.688 7 527 1.250
    文献[9] BZ2 0.292 2 990 3 488 1.167 3 553 1.188 3 409 1.140 2 780 0.930 2 804 0.938 3 411 1.141
    BZ3 0.402 3 820 3 892 1.019 4 007 1.049 3 761 0.985 3 055 0.800 3 032 0.794 4 046 1.059
    BZ4 0.515 4 180 4 313 1.032 4 477 1.071 4 114 0.984 3 328 0.796 3 266 0.781 4 640 1.110
    BZ5 0.566 4 460 4 484 1.005 4 684 1.050 4 277 0.959 3 460 0.776 3 370 0.756 4 970 1.114
    CZ1 0.329 2 780 2 920 1.050 2 978 1.071 2 847 1.024 2 257 0.812 2 324 0.836 2 851 1.026
    CZ2 0.658 3 678 3 891 1.058 4 057 1.103 3 672 0.998 3 005 0.817 2 862 0.778 4 222 1.148
    CZ3 0.329 3 030 2 920 0.964 2 978 0.983 2 847 0.940 2 257 0.745 2 324 0.767 2 851 0.941
    DZ1 0.592 4 290 4 325 1.008 4 521 1.054 4 121 0.961 3 334 0.777 3 235 0.754 4 802 1.119
    DZ2 0.592 4 230 4 325 1.022 4 521 1.069 4 121 0.974 3 334 0.788 3 235 0.765 4 802 1.135
    文献[10] TZ3-C50 0.682 3 029 2 751 0.908 2 935 0.969 2 590 0.855 1 973 0.651 1 989 0.657 3 212 1.061
    TZ2-C50 0.407 2 265 2 308 1.019 2 381 1.051 2 181 0.963 1 782 0.787 1 726 0.762 2 360 1.042
    TZ4-C50 0.804 3 274 2 921 0.892 3 169 0.968 2 763 0.844 2 270 0.693 2 100 0.641 3 604 1.101
    TZ3-C40 0.764 2 768 2 628 0.949 2 812 1.016 2 494 0.901 1 869 0.675 1 885 0.681 3 090 1.116
    TZ3-C60 0.621 2 914 2 862 0.982 3 046 1.045 2 684 0.921 2 067 0.709 2 083 0.715 3 323 1.140
    平均值 1.027 1.090 0.988 0.802 0.759 1.127
    标准差 0.062 0.068 0.047 0.068 0.064 0.077
    下载: 导出CSV
  • 梁坦, 王宏业, 吴善能, 等. 混凝土结构加固设计规范: GB50367—2013[S]. 北京:中国建筑工业出版社, 2014
    潘毅,杨成,林拥军,等. 基于BP神经网络的FRP加固混凝土柱承载力预测[J]. 西南交通大学学报,2008,43(6): 736-739

    PAN Yi, YANG Cheng, LIN Yongjun, et al. BP neural network-based prediction of load-bearing capacity of concrete column reinforced by FRP[J]. Journal of Southwest Jiaotong University, 2008, 43(6): 736-739
    蒲黔辉,勾红叶,张君华. 城市立交桥牛腿开裂及加固的模型试验[J]. 西南交通大学学报,2008,43(5): 648-653

    PU Qianhui, GOU Hongye, ZHANG Junhu. Model test of corbel cracking and reinforcement of urban overpass[J]. Journal of Southwest Jiaotong University, 2008, 43(5): 648-653
    单成林. 粘贴钢板加固RC梁受弯裂缝宽度计算方法[J]. 西南交通大学学报,2010,45(4): 508-513

    SHAN Chenglin. Calculation method of bending crack width in RC beams strengthened by bonding steel plate[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 508-513
    CHAI Y H, PRIESTLEY M J N, SEIBLE F. Seismic retrofit of circular bridge columns for enhanced flexural performance[J]. ACI Structural Journal, 1991, 88(5): 572-584
    PRIESTLEY M J N, SEIBLE F, XIAO Y, et al. Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-part 1:theoretical considerations and test design[J]. Structural Journal, 1994, 91(4): 394-405
    XIAO Y, WU H. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J]. Journal of Structural Engineering, 2003, 129(6): 725-732
    蔡健,徐进. 圆形钢套管加固混凝土中长柱轴压承载力研究[J]. 铁道科学与工程学报,2005,2(4): 62-67

    CAI Jian, XU Jin. Research on bearing capacity of reinforced concrete column strengthened by circular steel jacketing subjected to axial loads[J]. Journal of Railway Science And Engineering, 2005, 2(4): 62-67
    徐进,蔡健. 圆形钢套管加固方形混凝土柱轴心受压性能[J]. 东南大学学报(自然科学版),2006,36(4): 580-584

    XU Jin, CAI Jian. Behaviour of square reinforced concrete column strengthened by circular steel jacket under axial loading[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(4): 580-584
    卢亦焱,龚田牛,张学朋,等. 外套钢管自密实混凝土加固钢筋混凝土圆形截面短柱轴压性能试验研究[J]. 建筑结构学报,2013,34(6): 121-128

    LU Yiyan, GONG Tianniu, ZHANG Xuepeng, et al. Experimental research on behavior of circular RC column strengthened with self-compacting concrete filled circular steel jacket under axial loading[J]. Journal of Building Structures, 2013, 34(6): 121-128
    卢亦焱,梁鸿骏,李杉,等. 方钢管自密实混凝土加固钢筋混凝土方形截面短柱轴压性能试验研究[J]. 建筑结构学报,2015,36(7): 43-50

    LU Yiyan, LIANG Hongjun, LI Shan, et al. Experimental study on behavior of square RC columns strengthened with self-compacting concrete filled square steel tubes under axial load[J]. Journal of Building Structures, 2015, 36(7): 43-50
    AJDUKIEWICZ A, KLISZCZEWICZ A. Influence of recycled aggregates on mechanical properties of HS/HPC[J]. Cement & Concrete Composites, 2002, 24(2): 269-279
    YANG Y F, HAN L H. Experimental behaviour of recycled aggregate concrete filled steel tubular columns[J]. Journal of Constructional Steel Research, 2006, 62(12): 1310-1324
    吴波,刘伟,刘琼祥,等. 薄壁钢管再生混合短柱轴压性能试验研究[J]. 建筑结构学报,2012,33(9): 22-28

    WU Bo, LIU Wei, LIU Qiongxiang, et al. Axial behavior of thin-walled steel stub columns filled with demolished concrete segment/lump[J]. Journal of Building Structures, 2012, 33(9): 22-28
    XIAO J, HUANG J, YANG J, et al. Mechanical properties of confined recycled aggregate concrete under axial compression[J]. Construction & Building Materials, 2012, 26(1): 291-295
    WANG Y, CHEN J, GENG Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns[J]. Engineering Structures, 2015, 86(5): 192-212
    汤关祚, 沈希明, 招炳泉, 等. 钢管混凝土结构设计与施工规程: JCJ 01-89[S]. 上海: 同济大学出版社, 1989
    王玉银, 肖从真. 钢管混凝土结构设计与施工规程: CECS 28—2012[S]. 北京: 中国计划出版社, 2012
    European Committee for Standardization. Design of steel and concrete structures. part11: general rules and rules for building: Eurocode 4(EC4)[S]. Brussels: European Committee for Standardization, 2004
    马欣伯,张素梅,孙玉平. 日本AIJ关于圆钢管混凝土构件承载力设计方法介绍[J]. 工业建筑,2004,34(2): 69-74

    MA Xinbo, ZHANG Sumei, SUN Yuping. Introduction to AIJ method of load-carrying capacity of concrete-filled circular steel tubes[J]. Industrial Construction, 2004, 34(2): 69-74
    ANSI/AISC. Specification for structural steel buildings: 360-05[S]. Chicago: American Institute of Steel Construction, 2005
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  247
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回