• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于均匀化方法的无缝线路过渡段多尺度建模

郭一诗 余祖俊 史红梅 朱力强

郭一诗, 余祖俊, 史红梅, 朱力强. 基于均匀化方法的无缝线路过渡段多尺度建模[J]. 西南交通大学学报, 2018, 53(6): 1157-1165. doi: 10.3969/j.issn.0258-2724.2018.06.010
引用本文: 郭一诗, 余祖俊, 史红梅, 朱力强. 基于均匀化方法的无缝线路过渡段多尺度建模[J]. 西南交通大学学报, 2018, 53(6): 1157-1165. doi: 10.3969/j.issn.0258-2724.2018.06.010
GUO Yishi, YU Zujun, SHI Hongmei, ZHU Liqiang. Multiscale Modeling of Transition Section with Continuously Welded Rail Based on Homogenization Method[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1157-1165. doi: 10.3969/j.issn.0258-2724.2018.06.010
Citation: GUO Yishi, YU Zujun, SHI Hongmei, ZHU Liqiang. Multiscale Modeling of Transition Section with Continuously Welded Rail Based on Homogenization Method[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1157-1165. doi: 10.3969/j.issn.0258-2724.2018.06.010

基于均匀化方法的无缝线路过渡段多尺度建模

doi: 10.3969/j.issn.0258-2724.2018.06.010
详细信息
    作者简介:

    郭一诗(1988—),男,助理研究员,博士,研究方向为载运工具运用工程,E-mail: 11116349@bjtu.edu.cn

    通讯作者:

    朱力强(1972—),男,副教授,博士,研究方向为载运工具及基础设施检测与控制,E-mail: lqzhu@bjtu.edu.cn

  • 中图分类号: U213.9

Multiscale Modeling of Transition Section with Continuously Welded Rail Based on Homogenization Method

  • 摘要: 为分析无缝线路过渡段的钢轨应力分布问题,提出了针对路桥过渡段及周围延伸线路的多尺度建模方法. 针对过渡段两端的桥梁和路基所具有的周期性延伸的特点,采用渐进均匀化方法计算周期性结构的宏观等效性能,建立过渡段周围区段的宏观尺度模型. 对于过渡段内部,则采用小尺度建立包含关键细节的局部精细化模型. 不同尺度的局部模型之间按变形状态一致的原则建立边界耦合条件,构成完整的长线路模型. 两端线路的宏观均匀化模型为过渡段的局部状态分析提供完整的边界条件,同时通过对整体线路分层求解,避免了常规有限元模型的高维矩阵运算. 仿真试验表明:采用均匀化方法的多尺度模型比传统有限元模型的计算规模更小,因此求解速度更快;模型结果与京沪高速铁路宿州东站新汴河大桥过渡段的现场实测结果变化趋势一致,在主端刺、桥台支座处的轨道变形与实测数据的相关系数达到0.8.

     

  • 图 1  路桥过渡段的基本结构

    Figure 1.  Transition section of the subgrade and bridge

    图 2  考虑滑移特性的阻力-位移关系曲线

    Figure 2.  Resistance-displacement relationship of slide characteristics

    图 3  延伸线路的宏观模型和单元内部结构

    Figure 3.  Line model in coarse scale and the internal structure of periodic unit

    图 4  不同尺度模型的交界面

    Figure 4.  Interface of adjacent models in different scales

    图 5  现场24 h监测数据与仿真结果的比较

    Figure 5.  Comparisons of the site monitoring data and the simulation results for 24 hours

    图 6  主端刺处钢轨响应的极限分布状态

    Figure 6.  Distribution form of the rail stress and displacement at the termination cutting off

    图 7  不同温度下普通桥梁段各单元的钢轨应力分布形态

    Figure 7.  Distribution form of the rail stress in the girder spans at various temperatures

    图 8  采用均匀化法和有限元法计算钢轨应力结果的比较

    Figure 8.  Comparison of rail stress for homogenisation method and finite element method

    表  1  部分轨道结构参数

    Table  1.   Parameters of the transition section

    参数 计算值 参数 计算值
    钢轨 CHN60 地基模量/MPa 120
    扣件最大纵向
    阻力/kN
    无载6.5 扣件最大弹性
    位移/mm
    无载0.5
    端刺刚度/
    (MN•mm–1
    100 固结机构/
    (MN•mm–1
    103
    滑动层摩擦
    因数
    0.3 滑动层位移
    上限/mm
    0.5
    滑动层纵向
    刚度/(N•m–1
    13 × 103 滑动层垂向
    刚度/(N•m–1
    1.25 × 109
    桥墩顶纵向水平
    刚度/(kN•mm–1
    20 桥台顶纵向水平
    刚度/(kN•mm–1
    150
    下载: 导出CSV
  • BAEZA L, OUYANG H. A railway track dynamics model based on modal substructuring and a cyclic boundary condition[J]. Journal of Sound Vibration, 2011, 330(1): 75-86 doi: 10.1016/j.jsv.2010.07.023
    李兆霞,李爱群,陈鸿天,等. 大跨桥梁结构以健康监测和状态评估为目标的有限元模拟[J]. 东南大学学报(自然科学版),2003,33(5): 562-572 doi: 10.3321/j.issn:1001-0505.2003.05.007

    LI Zhaoxia, LI Aiqun, CHEN Hongtian, et al. Finite element modeling for health monitoring and condition assessment of long-span bridges[J]. Journal of Southeast University (Natural Science Edition), 2003, 33(5): 562-572 doi: 10.3321/j.issn:1001-0505.2003.05.007
    GARCIA-PALACIOS J, SAMARTIN A, MELIS M. Analysis of the railway track as a spatially periodic structure[J]. Journal of Rail and Rapid Transit, 2012, 226(2): 113-123 doi: 10.1177/0954409711411609
    吴佰建,李兆霞,汤可可. 大型土木结构多尺度模拟与损伤分析-从材料多尺度力学到结构多尺度力学[J]. 力学进展,2007,37(3): 321-335 doi: 10.3321/j.issn:1000-0992.2007.03.001

    WU Baijian, LI Zhaoxia, TANG Keke. Multi-scale modeling and damage analyses of large civil structure-multi-scale mechanics from material to structure[J]. Advances in Mechanics, 2007, 37(3): 321-335 doi: 10.3321/j.issn:1000-0992.2007.03.001
    BENSOUSSAN A, LIONS J L, PAPANICOLAU G. Asymptotic analysis for periodic structures[M]. Ameterdam: North-Holland Publishing Company, 1978: 12-35
    FISH J, CHEN W. Higher-order homogenization of initial boundary-value problem[J]. Journal of Engineering Mechanics, 2001, 127(12): 1223-1230 doi: 10.1061/(ASCE)0733-9399(2001)127:12(1223)
    FISH J, CHEN W, NAGAL G. Non-local dispersive model for wave propagation in heterogeneous media:one-dimensional case[J]. International Journal for Numerical Methods in Engineering, 2002, 54(54): 331-346
    CUI J Z, SHIN T M, WANG Y L. The two-scale analysis method for bodies with small periodic configurations[J]. Structural Engineering and Mechanics, 1996, 7(6): 601-614
    崔俊芝,曹礼群. 基于双尺度渐进分析的有限元算法[J]. 计算数学,1998,20(1): 89-101

    CUI Junzhi, CAO Liqun. Finite element method based on two-scale asymptotic analysis[J]. Mathematica Numerica Sinica, 1998, 20(1): 89-101
    XU Q Y, ZHOU X L, ZENG Z P. Mechanics model of additional longitudinal force transmission between bridges and continuously welded rails with small resistance fasteners[J]. Journal of Central South University of Technology, 2004, 11(3): 336-339 doi: 10.1007/s11771-004-0069-3
    高亮. 高速铁路无缝线路关键技术研究与应用[M]. 北京: 中国铁道出版社, 2012: 111-121
    LI Z G, WU T X. Modelling and analysis of force transmission in floating-slab track for railways[J]. Journal of Rail and Rapid Transit, 2008, 222(1): 45-57 doi: 10.1243/09544097JRRT145
    WAGNER G J, LIU W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition[J]. Journal of Computational Physics, 2003, 190(1): 249-274 doi: 10.1016/S0021-9991(03)00273-0
    BERGAN P G, HORRIGMOE G, BRAKELAND B, et al. Solution techniques for non-linear finite element problems[J]. International Journal for Numerical Methods in Engineering, 1978, 12(11): 1677-1696 doi: 10.1002/(ISSN)1097-0207
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  218
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-21
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回