• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一种应用于电动汽车的新型耦合机构优化设计

孙跃 谭若兮 唐春森 王智慧 代林

孙跃, 谭若兮, 唐春森, 王智慧, 代林. 一种应用于电动汽车的新型耦合机构优化设计[J]. 西南交通大学学报, 2018, 53(5): 1078-1086. doi: 10.3969/j.issn.0258-2724.2018.05.027
引用本文: 孙跃, 谭若兮, 唐春森, 王智慧, 代林. 一种应用于电动汽车的新型耦合机构优化设计[J]. 西南交通大学学报, 2018, 53(5): 1078-1086. doi: 10.3969/j.issn.0258-2724.2018.05.027
SUN Yue, TAN Ruoxi, TANG Chunsen, WANG Zhihui, DAI Lin. Optimized Design of New Coupling Mechanism for Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1078-1086. doi: 10.3969/j.issn.0258-2724.2018.05.027
Citation: SUN Yue, TAN Ruoxi, TANG Chunsen, WANG Zhihui, DAI Lin. Optimized Design of New Coupling Mechanism for Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1078-1086. doi: 10.3969/j.issn.0258-2724.2018.05.027

一种应用于电动汽车的新型耦合机构优化设计

doi: 10.3969/j.issn.0258-2724.2018.05.027
详细信息
    作者简介:

    孙跃(1960—),男,教授,博士生导师,研究方向为无线电能传输技术及其应用电力电子系统非线性建模、分析与控制,E-mail: syue06@cqu.edu.cn

  • 中图分类号: TM724

Optimized Design of New Coupling Mechanism for Electric Vehicles

  • 摘要: 针对电动汽车无线充电应用,提出了一种凹凸型磁耦合机构,在减小磁芯体积的情况下实现了更好的耦合特性,提高了系统功率传输能力. 基于有限元理论,利用COMSOL电磁场仿真软件,建立了凹凸型耦合机构的有限元仿真模型,针对线圈两端凸起磁芯高度、线圈两端凸起磁芯长度配比、磁芯长度、磁芯长度与宽度之间的约束关系以及磁芯厚度等主要结构参数从互感及耦合系数等角度分别进行了分析和优化设计,并讨论了磁芯变薄后的磁饱和特性. 通过仿真和实验测试结果验证了所设计耦合机构的可行性及在磁场分布及耦合特性方面的优势,使得系统的输出功率和效率相对原条状磁芯结构分别提高了37%和10%.

     

  • 图 1  米字型磁耦合机构

    Figure 1.  Meter-type magnetic coupling mechanism

    图 2  凹凸型磁耦合机构

    Figure 2.  Concave-convex-type coupling mechanism

    图 3  耦合机构仿真模型

    Figure 3.  Coupling mechanism simulation

    图 4  模型网格化

    Figure 4.  Model meshing

    图 5  磁芯凹槽厚度与耦合系数的关系

    Figure 5.  Relationship between core groove thickness and coupling coefficient

    图 6  凸出磁芯长度占比与耦合系数的关系

    Figure 6.  Relationship between the length of the protruding core and the coupling coefficient

    图 7  磁芯长度与互感、自感及耦合系数的关系

    Figure 7.  Relationship between core length and mutual inductance, self-inductance and coefficient

    图 8  目标函数kmax = fXY)的求解方法

    Figure 8.  Solution of the objective function kmax = f(XY)

    图 9  不同长度磁芯随着磁芯宽度变化所对应的耦合系数

    Figure 9.  Coupling coefficient corresponding to the variation in the core width with different lengths

    图 10  最优长宽配比下的Zk的关系

    Figure 10.  Relationship between Z and k under the optimal aspect ratio

    图 11  磁芯宽度、厚度与互感的三维曲面

    Figure 11.  Three-dimensional surface of the core width, thickness,and

    图 12  目标函数kmax = f $ \!\!\!\!\!X \text{,}\!\!\!\!\!Y \text{,}\!\!\!\!\!Z$ )的求解过程

    Figure 12.  Solution of the objective function kmax = f $ \!\!\!\!\!X \text{,}\!\!\!\!\!Y \text{,}\!\!\!\!\!Z$

    图 13  凹处磁芯上/下表面磁感应强度的变化曲线(Ip = 23 A)

    Figure 13.  Variation curve of B on the upper and lower surface of concave core (Ip = 23 A)

    图 14  凹处磁芯上表面磁感应强度的变化曲线(Ip = 40 A)

    Figure 14.  Variation curve of B on the upper cores of concave core (Ip = 40 A)

    图 15  Z = 9 mm时凹处磁芯上/下表面B的变化曲线(Ip = 23 A)

    Figure 15.  Z = 9 mm when the surface and the bottom of the core magnetic flux density B (Ip = 23 A)

    图 16  磁耦合机构y-z轴视图

    Figure 16.  View of the y-z magnetic coupling mechanism

    图 17  y-z轴磁感应强度分布

    Figure 17.  Magnetic induction intensity distribution of the y-z axis

    图 18  磁力线分布

    Figure 18.  Magnetic field distribution

    表  1  电磁耦合机构磁芯参数

    Table  1.   Electromagnetic coupling mechanism core parmeters

    参数 原结构 新结构 参数 原结构 新结构
    x/mm 279 270 f/kHz 20 20
    y/mm 28 36 M/μH 96.10 115.95
    z/mm 16 9 k 0.173 0.188
    Vc/cm3 1 500 1 166 Rp 0.270 0.267
    Ip/A 23 23 Rs 0.270 0.263
      注:Vc为磁芯用量总体积;f为系统工作频率;RpRs分别为原、副边线圈的阻值.
    下载: 导出CSV
  • BUDHIA M, COVIC G A, BOYS J T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3096-3108
    HUANG C, JAMES J E, COVIC G A. Design considerations for variable coupling lumped coil systems[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 680-689
    NAGENDRA G R, CHEN L, COVIC G A, et al. Detection of EVs on IPT highways[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 584-597
    BUDHIA M, BOYS J T, Covic G A, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328
    COVIC G A, BOYS J T. Inductive power transfer[J]. Proceedings of the IEEE, 2013, 101(6): 1276-1289
    KISSIN M L G, BOYS J T, COVIC G A. Interphase mutual inductance in polyphase inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2393-2400
    ZAHEER A, HAO H, COVIC G A, et al. Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 1937-1955
    COVIC G A, BOYS J T. Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(1): 28-41
    ELLIOTT G, RAABE S, COVIC G A, et al. Multiphase pickups for large lateral tolerance contactless power-transfer systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1590-1598
    RAABE S, COVIC G A. Practical design considerations for contactless power transfer quadrature pick-ups[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 400-409
    BUDHIA M, COVIC G, BOYS J. A new IPT magnetic coupler for electric vehicle charging systems[C]// IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. Glendale: [s.n.], 2010, 7500(1): 2487-2492
    BUDHIA M, COVIC G A, BOYS J T, et al. Development and evaluation of single sided flux couplers for contactless electric vehicle charging[C]// 2011 IEEE Energy Conversion Congress and Exposition. [S.l.]: IEEE, 2011, 47(10): 614-621
    TAKANASHI H, SATO Y, KANEKO Y, et al. A large air gap 3kW wireless power transfer system for electric vehicles[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh: [s.n.], 2012, 11(4): 269-274
    NAGATSUKA Y, EHARA N, KANKEO Y, et al. Compact contactless power transfer system for electric vehicles[C]//International Power Electronics Conference (IPEC). Sapporo: [s.n.], 2010: 807-813
    LEE J, SHEN H, LEE K. Design and implementation of weaving-type pad for contactless EV inductive charging system[J]. IET Power Electronics, 2014, 10(7): 2533-2542
    JANG Y J, KO Y D, JEONG S. Optimal design of the wireless charging electric vehicle[C]//2012 IEEE International Electric Vehicle Conference. Greenville: IEEE, 2012: 1-5
    PARK C, LEE S W, RIM C T. 5m-off-long-distance inductive power transfer system using optimum shaped dipole coils[C]//Proceedings of the 7th International Power Electronics and Motion Control Conference. Harbin: [s.n.], 2012, 2: 1137-1142
    HU C, SUN Y, LV X, et al. Magnetic coupler design procedure for IPT system and its application to EVs' wireless charging[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(3): 861-873
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  195
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-28
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回