Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于车路协同的车辆定位算法研究

罗文慧 董宝田 王泽胜

田铭兴, 李进, 高原, 柳轶彬, 闵永智. 变压器式可控电抗器的解耦工作模式[J]. 西南交通大学学报, 2018, 53(3): 620-627. doi: 10.3969/j.issn.0258-2724.2018.03.025
引用本文: 罗文慧, 董宝田, 王泽胜. 基于车路协同的车辆定位算法研究[J]. 西南交通大学学报, 2018, 53(5): 1072-1077, 1086. doi: 10.3969/j.issn.0258-2724.2018.05.026
TIAN Mingxing, LI Jin, Gao Yuan, LIU Yibin, MIN Yongzhi. Decoupling Operation Mode of Controllable Reactor of Transformer Type[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 620-627. doi: 10.3969/j.issn.0258-2724.2018.03.025
Citation: LUO Wenhui, DONG Baotian, WANG Zesheng. Algorithm Based on Cooperative Vehicle Infrastructure Systems[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1072-1077, 1086. doi: 10.3969/j.issn.0258-2724.2018.05.026

基于车路协同的车辆定位算法研究

doi: 10.3969/j.issn.0258-2724.2018.05.026
详细信息
    作者简介:

    罗文慧(1983—),女,博士研究生,研究方向为智能运输系统理论与技术,E-mail: 14114230@bjtu.edu.cn

    通讯作者:

    董宝田(1956—),男,教授,博士生导师,研究方向为铁路信息化,E-mail: btdong@bjtu.edu.cn

  • 中图分类号: U491.54

Algorithm Based on Cooperative Vehicle Infrastructure Systems

  • 摘要: 为解决道路交叉口车辆由于定位信号缺失或者延迟引起的车辆定位偏差较大的问题,提出了基于车路协同的协同地图匹配算法(cooperative map-matching,CMM). 首先利用扩展Kalman滤波(extended Kalman filter,EKF)融合GPS与车载航位推算系统(vehicular dead reckoning,DR)信息作为协同地图匹配的预先定位;然后基于短程通讯技术实现车辆信息的交换与共享,在电子地图的基础上,利用道路约束实现车辆进一步定位. 为了验证算法的有效性,搭建了模拟真实场景的仿真环境进行实验. 研究结果表明:采用EKF融合GPS/DR数据的交叉口车辆定位平均偏差为9.09 m,相比GPS 的14.31 m,定位偏差减小30.87%;采用CMM算法的交叉口车辆,当参与CMM车辆数为7时,平均位置偏差为4.5 m,参与CMM车辆数为10辆时,平均位置偏差为2.75 m,相比EKF定位偏差减小69.74%.

     

  • 致谢: 本文的研究工作得到兰州交通大学优秀科研团队项目(201701)的资助.
  • 图 1  CMM算法流程

    Figure 1.  Algorithm flowchart of CMM

    图 2  CMM算法示意图(右方车辆为目标车辆)

    Figure 2.  Schematic diagram of CMM(the right one is the target vehicle)

    图 3  网络地图

    Figure 3.  Road map

    图 4  定位轨迹

    Figure 4.  Positioning trajectories

    图 5  定位偏差

    Figure 5.  Positioning deviation

    图 6  参与CMM的车辆数与定位平均偏差关系

    Figure 6.  Relationship between the number of vehicles in CMM and the average positioning deviation

    图 7  定位轨迹

    Figure 7.  Positioning trajectories

    图 8  定位偏差

    Figure 8.  Positioning deviation

    表  1  观测点GPS与EKF偏差比较

    Table  1.   Comparison of deviation between GPS and EKF of observation points

    定位方法 观测点
    P1 P2 P3 P4 P5 P6
    GPS 17.92 11.23 12.55 15.50 14.31 14.40
    EKF 8.81 6.62 7.52 12.83 8.61 10.20
    下载: 导出CSV

    表  2  CMM与其它定位方法的位置偏差比较

    Table  2.   Comparison of position deviation between CMM and other positioning methods

    GPS EKF 参与CMM算法的车辆数/辆
    2 3 4 5 6 7
    14.31 9.09 9.01 8.52 7.16 6.44 5.72 4.50
    下载: 导出CSV

    表  3  EKF定位偏差理论值与实测值

    Table  3.   Comparison of EKF positioning deviations theoretical and experimental

    数值来源 P1 P2 P3 P4 P5 P6
    理论估计值 8.85 6.65 6.52 12.70 8.65 10.28
    实测值 8.81 6.62 6.91 12.83 8.61 10.20
    下载: 导出CSV
  • HUANG Chungming, LIN Shihyang. Cooperative vehicle collision warning system using the vector-based approach with dedicated short range communication data transmission[J]. IET Intelligent Transport Systems, 2014, 8(2): 124-134
    吴国锋. 蜂拥算法及其在协同自动驾驶中的应用[D]. 成都: 电子科技大学, 2015
    VAN A B, VAN D C J G, VISSER R. The impact of cooperative adaptive cruise control on traffic-flow characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 429-436
    STEVENS A, BRUSQUE C, KREMS J. Driver adaptation to information and assistance systems[M].London: the Institution of Engineering and Technology, 2014: 319-334
    ROHANI M, GINGRAS D, GRUYER D. A novel approach for improved vehicular positioning using cooperative map matching and dynamic base station DGPS concept[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 230-239
    MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 296-305
    LIU K, LIM H B, FRAZZOLI E, et al. Improving positioning accuracy using GPS pseudorange measurements for cooperative vehicular localization[J]. IEEE Transactions on Vehicular Technology, 2014, 63(6): 2544-2556
    GOLESTAN K, SATTAR F, KARRAY F, et al. Localization in vehicular ad hoc networks using data fusion and V2V communication[J]. Computer Communications, 2015, 71(1): 61-72
    YAO J, BALAEI A T, HASSAN M, et al. Improving cooperative positioning for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(6): 2810-2823
    ALAM N, KEALY A, DEMPSTER A G. An INS-aided tight integration approach for relative positioning enhancement in VANETs[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1992-1996
    YAO Yiqing, XU Xiaosu, ZHU Chenchen, et al. A hybrid fusion algorithm for GPS/INS integration during GPS outages[J]. Measurement, 2017, 103(1): 42-51
    徐宏宇,王浩,王尔申. 基于扩展卡尔曼滤波的GPS定位数据处理方法研究[J]. 科学技术与工程,2012,12(31): 8137-8142

    XU Hongyu, WANG Hao, WANG Ershen. Research of GPS positioning data processing based on extended kalman filtering[J]. Science Technology and Engineering, 2012, 12(31): 8137-8142
    SELLOUM A, BETAILLE D, LE C E, et al. Lane level positioning using particle filtering[C]// 12th International IEEE conference on Intelligent Transportation Systems. St Louis: Institute of Electrical and Electronics Engineers Inc., 2009: 539-544
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  189
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回