• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于数值模型和解析模型的钢轨波导特性分析

代丰 刘学毅 朱颖 汤普森·代维 杨吉忠

代丰, 刘学毅, 朱颖, 汤普森·代维, 杨吉忠. 基于数值模型和解析模型的钢轨波导特性分析[J]. 西南交通大学学报, 2018, 53(5): 951-957, 1016. doi: 10.3969/j.issn.0258-2724.2018.05.011
引用本文: 代丰, 刘学毅, 朱颖, 汤普森·代维, 杨吉忠. 基于数值模型和解析模型的钢轨波导特性分析[J]. 西南交通大学学报, 2018, 53(5): 951-957, 1016. doi: 10.3969/j.issn.0258-2724.2018.05.011
DAI Feng, LIU Xueyi, ZHU Ying, THOMPSON David, YANG Jizhong. Analysis of Guided Wave Behaviour in Rails Using Numerical or Analytical Models[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 951-957, 1016. doi: 10.3969/j.issn.0258-2724.2018.05.011
Citation: DAI Feng, LIU Xueyi, ZHU Ying, THOMPSON David, YANG Jizhong. Analysis of Guided Wave Behaviour in Rails Using Numerical or Analytical Models[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 951-957, 1016. doi: 10.3969/j.issn.0258-2724.2018.05.011

基于数值模型和解析模型的钢轨波导特性分析

doi: 10.3969/j.issn.0258-2724.2018.05.011
详细信息
    作者简介:

    代丰(1988—),女,工程师,博士,研究方向为高速重载轨道结构及轨道动力学,E-mail: 840898782@qq.com

  • 中图分类号: V211.3

Analysis of Guided Wave Behaviour in Rails Using Numerical or Analytical Models

  • 摘要: 钢轨振动由沿钢轨传递的各类导波构成,是铁路滚动噪声的主要贡献者. 为了研究铁路轨道的动力特性,分别基于铁木辛柯梁理论和波导有限元法建立了两种分析模型,推导自由波响应和受迫响应的求解过程,以波数、群速度、速度导纳和衰减率为指标,分析了两种模型条件下钢轨的波导特性. 研究结果表明:波导有限元模型包含了钢轨横截面所有的变形特征,可表征6 kHz内钢轨中的8种导波及其特性,反映导波波型交换、群速度互换的现象,以及高阶导波激发引起的导纳峰值;铁木辛柯梁模型可识别包括弯曲波、扭转波和纵波在内的5种钢轨导波,无法揭示截止频率在1.5 kHz以上与钢轨截面变形相关的导波;铁木辛柯梁模型可给出2 kHz内合理的钢轨垂向原点速度导纳计算结果.

     

  • 图 1  钢轨和扣件波导有限元模型

    Figure 1.  Waveguide finite element model of rail and fasteners

    图 2  波导有限元模型和铁木辛柯梁模型钢轨导波频散关系对比

    Figure 2.  Comparison of rail dispersion relation between waveguide finite element model and Timoshenko beam model

    图 3  图2的低频区段放大图

    Figure 3.  Enlarged Fig.2 at low frequencies

    图 4  钢轨导波模态示例

    Figure 4.  Examples of wave mode shapes of rail

    图 5  波导有限元模型和铁木辛柯梁模型钢轨导波的群速度对比

    Figure 5.  Comparison of rail group velocity between waveguide finite-element model and Timoshenko beam model

    图 6  图5的低频区段放大图

    Figure 6.  Enlarged Fig. 5 at low frequencies

    图 7  钢轨垂向原点速度导纳和相位

    Figure 7.  Vertical point mobility and phase of rail

    图 8  波导有限元模型和铁木辛柯梁模型钢轨导波的衰减率对比

    Figure 8.  Comparison of rail decay rate between waveguide finite element model and Timoshenko beam model

  • THOMPSON D J. Wheel-rail noise generation,part III:rail vibration[J]. Journal of Sound and Vibration, 1993, 161(3): 421-446
    KNOTHE K, GRASSIE S. Modeling of railway track and vehicle/track interaction at high frequencies[J]. Vehicle System Dynamics, 1993, 22(3): 209-262
    AALAMI B. Waves in prismatic guides of arbitrary cross-section[J]. Journal of Applied Mechanics, 1973, 40(4): 1067-1072
    SNEDDON I N. Fourier transforms[M]. New York: McGraw-Hill, 1951: 28-33
    SNEDDON I N. Partial differential equations[M]. New York: McGraw-Hill, 1964: 45-52
    NILSSON C M, JONES C J C, THOMPSON D J, et al. A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails[J]. Journal of Sound and Vibration, 2009, 321(3): 813-836
    GAVRIC L. Computation of propagative waves in free rail using a finite element technique[J]. Journal of Sound and Vibration, 1995, 185(3): 531-543
    RYUE J, THOMPSON D J, WHITE P R, et al. Investigations of propagating wave types in railway tracks at high frequencies[J]. Journal of Sound and Vibration, 2008, 315(1/2): 157-175
    RYUE J, THOMPSON D J, WHITE P R. Decay rates of propagating waves in railway tracks at high frequencies[J]. Journal of Sound and Vibration, 2009, 320(4/5): 955-976
    卢超,杨雪娟,戴翔,等. 钢轨中导波传播模式的半解析有限元分析与试验测量[J]. 机械工程学报,2015,51(6): 79-86

    LU Chao, YANG Xuejuan, DAI Xiang, et al. Semi-analytical FEM analysis and experimental measurement for propagating guided waves modes in rail[J]. Journal of Mechanical Engineering, 2015, 51(6): 79-86
    许西宁. 基于超声导波的无缝线路钢轨应力在线检测技术应用基础研究[D]. 北京: 北京交通大学, 2013
    THOMPSON D J. Railway noise and vibration: mechanisms, modelling and means of control[M]. Oxford: Elsevier, 2009: 59-62
    GRAFF K F. Wave motion in elastic solids[M]. Oxford: Oxford University Press, 1975: 75-126
    GAVRIC L. Finite element computation of dispersion properties of thin-walled waveguides[J]. Journal of Sound and Vibration, 1994, 173(1): 377-385
    DOYLE J F. Wave propagation in structures[M]. New York: Springer, 1997: 27-34
    THOMSON W T, DAHLEH M D. Theory of vibration with applications[M]. 5th Edition. Beijing: Tsinghua University Press, 2005: 230-233
    马大猷. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社, 2002: 1147-1151
    THOMPSON D J, JONES C J C. Review of the modelling of wheel/rail noise generation[J]. Journal of Sound and Vibration, 2000, 231(3): 519-536
  • 加载中
图(8)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  276
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回