• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于接触斑能量耗散轮轨磨损与损伤机制研究

郭立昌 杨斌 何成刚 朱文涛 王文健 刘启跃

郭立昌, 杨斌, 何成刚, 朱文涛, 王文健, 刘启跃. 基于接触斑能量耗散轮轨磨损与损伤机制研究[J]. 西南交通大学学报, 2018, 53(5): 945-950. doi: 10.3969/j.issn.0258-2724.2018.05.010
引用本文: 郭立昌, 杨斌, 何成刚, 朱文涛, 王文健, 刘启跃. 基于接触斑能量耗散轮轨磨损与损伤机制研究[J]. 西南交通大学学报, 2018, 53(5): 945-950. doi: 10.3969/j.issn.0258-2724.2018.05.010
GUO Lichang, YANG Bin, HE Chenggang, ZHU Wentao, WANG Wenjian, LIU Qiyue. Wear and Damage Mechanism of Wheel-Rail Materials Based on Contact Zone Energy Dissipation[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 945-950. doi: 10.3969/j.issn.0258-2724.2018.05.010
Citation: GUO Lichang, YANG Bin, HE Chenggang, ZHU Wentao, WANG Wenjian, LIU Qiyue. Wear and Damage Mechanism of Wheel-Rail Materials Based on Contact Zone Energy Dissipation[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 945-950. doi: 10.3969/j.issn.0258-2724.2018.05.010

基于接触斑能量耗散轮轨磨损与损伤机制研究

doi: 10.3969/j.issn.0258-2724.2018.05.010
详细信息
    作者简介:

    郭立昌(1983—),男,博士研究生,讲师,研究方向为轮轨系统摩擦学,E-mail: lcguo@swjtu.cn

    通讯作者:

    王文健(1980—),男,博士,研究员,研究方向为轮轨系统摩擦学,E-mail: wwj527@163.com

  • 中图分类号: V221.3

Wear and Damage Mechanism of Wheel-Rail Materials Based on Contact Zone Energy Dissipation

  • 摘要: 为了建立轮轨磨损与损伤实验的统一标准,在目前实验方法研究轮轨磨损与损伤机制的基础上,提出了基于接触斑能量耗散轮轨磨损与损伤机制的分析方法. 针对轮轨磨损与损伤实验缺乏统一标准的现状,对不同实验方法获得的磨损与损伤结果进行对比分析;通过对不同实验结果的对比分析,提出了基于接触斑能量耗散轮轨磨损与损伤机制的分析方法,并分析了不同轮轨材料与实验方法的单位面积轮轨接触斑耗散能-磨损率曲线的变化规律. 研究结果表明:根据轮轨材料的单位面积轮轨接触斑耗散能-磨损率变化曲线规律及轮轨损伤特征,可将轮轨磨损划分为3个分区:轻微磨损、严重磨损、灾难性磨损,单位面积轮轨接触斑耗散能-磨损率曲线在实际应用中可预测轮轨磨损;轮轨接触斑耗散能准确地表征轮轨磨损率和损伤形式,可用于轮轨磨损与损伤数据的对比分析.

     

  • 图 1  JD–1轮轨摩擦模拟试验机

    Figure 1.  JD–1 wheel-rail friction simulation testing machine

    图 2  日本轮轨滚动磨损试验装置示意

    Figure 2.  Schematic diagram of Japan wheel-rail rolling wear testing device

    图 3  不同材料的磨损率结果对比

    Figure 3.  Comparisons of wear rate results under different material conditions

    图 4  不同试验机钢轨Tγ/A-磨损率对比(U71Mn)

    Figure 4.  Comparisons of Tγ/Avs. wear rate of rail material (U71Mn) on different testing machines

    图 5  CL60车轮材料磨损率随/A值变化

    Figure 5.  Wear rate of CL60 wheel material changing with /A

    图 6  不同磨损阶段下车轮试样损伤SEM照片

    Figure 6.  Scanning electron microscope (SEM) micrographs of damage on wheel roller at different wear stages.

    图 7  仿真流程

    Figure 7.  Simulation flowchart.

  • DONZELLA G, FACCOLI M, MAZZÙ A, et al. Progressive damage assessment in the near-surface layer of railway wheel-rail couple under cyclic contact[J]. Wear, 2011, 271: 408-416
    WANG W J, GUO H M, DU X, et al. Investigation on the damage mechanism and prevention of heavy-haul railway rail[J]. Engineering Failure Analysis, 2013, 35: 206-218
    刘启跃,张波,周仲荣,等. 滚动轮波形磨损实验研究[J]. 摩擦学学报,2003,23(2): 132-135

    LIU Qiyue, ZHANG Bo, ZHOU Zhongrong, et al. Experimental study on rolling wheel corrugation[J]. Tribology, 2003, 23(2): 132-135
    邓铁松. 两种轴箱悬挂布置直线电机地铁车辆的轮轨磨耗及动力学性能对比[D]. 成都: 西南交通大学, 2014
    大野薰. 增粘材料喷射装置(喷砂器)[J]. 国外内燃机车,2007(2): 11-14
    JIN X S, ZHANG W H, ZENG J, et al. Adhesion experiment on a wheel-rail system and its numerical analysis[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2004, 218(1): 293-303
    ZHANG W H, CHEN J Z, WU X J, et al. Wheel/rail adhesion and analysis by using full scale roller rig[J]. Wear, 2002, 253: 82-88
    KUMER S. 北美机车在撒砂和不撒砂情况下的轮轨磨损与粘着[J]. 国外内燃机车, 1987(10): 10-18
    LIU Q Y, ZHANG B, ZHOU Z R. An experimental study of rail corrugation[J]. Wear, 2003, 255(7): 1121-1126
    WANG W J, ZHONG W, LIU Q Y, et al. Investigation on rolling wear and fatigue properties of railway rail[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2009, 223(7): 1033-1039
    JIN Y, ISHIDA M, NAMURA A. Experimental simulation and prediction of wear of wheel flange and rail gauge corner[J]. Wear, 2011, 271(1/2): 259-267
    FLETCHER D I, BEYNON J H. Development of a machine for closely controlled rolling contact fatigue and wear testing[J]. Journal of Testing and Evaluation, 2000, 28(4): 267-275
    DING H H, FU Z K, WANG W J, et al. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials[J]. Wear, 2015, 330/331: 563-570
    BOLTON P J, CLAYTON P. Rolling-sliding wear damage in rail and type steels[J]. Wear, 1984, 93(2): 145-165
    LEWIS R, OLOFSSON U. Mapping rail wear regimes and transitions[J]. Wear, 2004, 257(7): 721-729
    LEWIS R, DWYER-JOYCE R S. Wear mechanisms and transitions in railway wheel steels[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2004, 218(6): 467-478
    LEWIS R, DWYER-JOYCE R S, OLOFSSON U, et al. Mapping railway wheel material wear mechanisms and transitions[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2010, 224(3): 125-137
    BRAGHIN F, LEWIS R, DWYER-JOYCE R S, et al. A mathematical model to predict railway wheel profile evolution due to wear[J]. Wear, 2006, 261(11): 1253-1264
    POMBOA J, AMBRÓSIO J, PEREIRA M, et al. Development of a wear prediction tool for steel railway wheels using three alternative wear functions[J]. Wear, 2011, 271(1): 238-245
    WANG W J, LEWIS R, YANG B, et al. Wear and damage transitions of wheel and rail materials under various contact conditions[J]. Wear, 2016, 362/363: 146-152
    HARDWICK C, LEWIS R, EADIE D T. Wheel and rail wear understanding the effects of water and grease[J]. Wear, 2014, 314(1): 198-204
  • 加载中
图(7)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  185
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回