• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

整体道床轨道扣件刚度对钢轨声功率特性的影响

盛曦 赵才友 王平 陈俊豪 魏晓

盛曦, 赵才友, 王平, 陈俊豪, 魏晓. 整体道床轨道扣件刚度对钢轨声功率特性的影响[J]. 西南交通大学学报, 2018, 53(5): 928-936, 1094. doi: 10.3969/j.issn.0258-2724.2018.05.008
引用本文: 盛曦, 赵才友, 王平, 陈俊豪, 魏晓. 整体道床轨道扣件刚度对钢轨声功率特性的影响[J]. 西南交通大学学报, 2018, 53(5): 928-936, 1094. doi: 10.3969/j.issn.0258-2724.2018.05.008
SHENG Xi, ZHAO Caiyou, WANG Ping, CHEN Junhao, WEI Xiao. Effects of Fastener Stiffness of Monolithic Bed Track on Vertical Rail Sound Power Characteristics[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 928-936, 1094. doi: 10.3969/j.issn.0258-2724.2018.05.008
Citation: SHENG Xi, ZHAO Caiyou, WANG Ping, CHEN Junhao, WEI Xiao. Effects of Fastener Stiffness of Monolithic Bed Track on Vertical Rail Sound Power Characteristics[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 928-936, 1094. doi: 10.3969/j.issn.0258-2724.2018.05.008

整体道床轨道扣件刚度对钢轨声功率特性的影响

doi: 10.3969/j.issn.0258-2724.2018.05.008
详细信息
    作者简介:

    盛曦(1990—),男,博士研究生,研究方向为轨道动力学及减振降噪,电话:18224024756,E-mail: 617615335@qq.com

    通讯作者:

    王平(1969—),男,教授,博士,研究方向为高速重载轨道结构及轨道动力学,电话:13608007071,E-mail: wping@home.swjtu.edu.cn

  • 中图分类号: U213.2

Effects of Fastener Stiffness of Monolithic Bed Track on Vertical Rail Sound Power Characteristics

  • 摘要: 为了研究整体道床轨道扣件刚度对钢轨垂向振动声功率特性的影响,建立了平面半轨道模型,利用谱元法计算了钢轨导纳,建立了轨道周期子结构模型,利用谱传递矩阵法计算了轨道衰减率;结合钢轨导纳和轨道衰减率计算结果,得到了单位简谐点激励作用下的钢轨声功率级,分析了扣件刚度对钢轨相对声功率级的影响. 研究结果表明:在单位简谐点激励作用下,中低频范围内的钢轨声功率级随着频率的增大而提高,在1/3倍频程中心频率800 Hz处,钢轨声功率级出现峰值;钢轨声功率级随着扣件刚度的减小而增大,但主要影响的频率范围为400 Hz以下;扣件刚度减小越多,钢轨声功率级增大越显著;扣件刚度的减小使得钢轨声功率级在钢轨弯曲共振频率处增加量最大,这是因为在该频率下钢轨导纳幅值增加量和轨道衰减率减少量均较大.

     

  • 图 1  平面半轨道模型

    Figure 1.  Plane half-track model

    图 2  谱元法计算模型

    Figure 2.  Calculating model of spectral element method

    图 3  两节点谱元法Timoshenko梁单元

    Figure 3.  Two-node Timoshenko beam spectral element

    图 4  谱元法Timoshenko梁截断单元

    Figure 4.  Throw-off element in spectral element method

    图 5  轨道周期子结构模型

    Figure 5.  Periodic track-substructure model

    图 6  谱传递矩阵法计算模型

    Figure 6.  Calculating model of spectral transfer matrix method

    图 7  有砟轨道谱元法计算模型

    Figure 7.  Spectral element method calculating model of ballast track

    图 8  有砟轨道谱传递矩阵法计算模型

    Figure 8.  Spectral transfer matrix method calculating model of ballast track

    图 9  有砟轨道钢轨原点导纳幅值

    Figure 9.  Vertical direct rail mobility amplitude of ballast track

    图 10  有砟轨道轨道衰减率

    Figure 10.  Vertical track decay rate of ballast track

    图 11  钢轨垂向原点导纳幅值

    Figure 11.  Vertical direct rail mobility amplitude

    图 12  轨道周期子结构的垂向轨道衰减率

    Figure 12.  Vertical track decay rate of periodic track substructure

    图 13  钢轨声功率级

    Figure 13.  Rail sound power level

    图 14  不同扣件刚度下的跨中钢轨垂向原点导纳幅值

    Figure 14.  Vertical direct mid-span rail mobility amplitudes of different fastener stiffness

    图 15  不同扣件刚度下的轨道衰减率

    Figure 15.  Track decay rate of different fastener stiffness

    图 16  不同扣件刚度下的钢轨相对声功率级

    Figure 16.  Relative rail sound power level of different fastener stiffness

    表  1  计算参数

    Table  1.   Calculating parameters

    部件 项目 符号 参数
    钢轨 模型长度/m LH 25
    弹性模量/GPa E 210
    泊松比 υ 0.3
    截面面积/m2 A 7.75×10-3
    密度/(kg•m–3) ρ 7 850
    剪切矫正因子 K 0.532 9
    绕水平轴惯性矩/m4 I 3.22×10-5
    扣件 垂向刚度/(kN•mm–1) kv 14
    阻尼损耗因子 ηp 0.25
    轨下垫板沿纵向的长度/m br 0.17
    扣件间距/m a 0.625
    下载: 导出CSV

    表  2  有砟轨道计算参数

    Table  2.   Calculating parameters of ballast track

    项目 符号 参数
    钢轨剪切矫正因子 K 0.4
    垫板垂向刚度/(kN•mm–1) kpv 180
    垫板阻尼损耗因子 ηp 0.2
    道砟垂向刚度/(kN•mm–1) kbv 60
    道砟阻尼损耗因子 ηb 1
    扣件间距/m a 0.6
    轨枕质量/kg ms 150
    下载: 导出CSV
  • 李小珍,刘全民,张迅,等. 铁路高架车站车致振动实测与理论分析[J]. 西南交通大学学报,2014,49(4): 612-618

    LI Xiaozhen, LIU Quanmin, ZHANG Xun, et al. Measurement and theoretical analysis of vehicle-induced vibration on elevated railway station[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 612-618
    李小珍,张志俊,冉汶民,等. 桥上列车高速运行引起的地面振动试验研究[J]. 西南交通大学学报,2016,51(5): 815-823

    LI Xiaozhen, ZHANG Zhijun, RAN Wenmin, et al. Field test of ground vibration induced by high-speed train on elevated bridge[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 815-823
    王平,周昌盛,韦凯,等. 随机振动过程中轮轨系统内的能量研究[J]. 铁道工程学报,2015,32(5): 30-34

    WANG Ping, ZHOU Changsheng, WEI Kai, et al. The energy research on the wheel-rail system in the process of stochastic vibration[J]. Journal of Railway Engineering Society, 2015, 32(5): 30-34
    任海,肖友刚. 地铁车内噪声的成因及控制策略[J]. 铁道车辆,2009,47(4): 25-28

    REN Hai, XIAO Yougang. The cause and control strategy of vehicle interior noise[J]. Rolling Stock, 2009, 47(4): 25-28
    王平,唐剑,杨鹏,等. GJ-III减振扣件轨道对轨道交通高架段环境噪声的影响分析[J]. 铁道标准设计,2017,61(3): 4-9

    WANG Ping, TANG Jian, YANG Peng, et al. Analysis of the influence of GJ-III fastener vibration damping track on environment noise of metro viaduct section[J]. Railway Standard Design, 2017, 61(3): 4-9
    THOMPSON D. Railway noise and vibration: mechanisms, modelling and means of control[M]. Oxford: Elsevier Limited, 2008: 175-197
    JONES C J C, THOMPSON D J, DIEHL R J. The use of decay rates to analyse the performance of railway track in rolling noise generation[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 485-495
    CEN. EN 15461: 2008+A1: 2010 Railway applications-noise emission-characterization of the dynamic properties of track selections for pass by noise measurements[S]. Brussels: CEN Management Centre, 2010
    DOYLE J F. Wave propagation in structures: spectral analysis using fast discrete fourier transforms[M]. New York: Springer, 1997: 150-197
    IGAWA H, KOMATSU K, SANO M. Wave propagation analysis of frame structures using the spectral element method[J]. Journal of Sound & Vibration, 2004, 277(4): 1071-1081
    LEE U. Spectral element method in structural dynamics[M]. New York: John Wiley and Sons, 2009: 355-369
    THOMPSON D J. Wheel-rail noise generation, part III: rail vibration[J]. Journal of Sound & Vibration, 1993, 161(3): 421-446
    MAN A P D. A survey of dynamic railway track properties and their quality[D]. Delft: TU Delft, 2002
    ESQUIVEL-SIRVENT R, COCOLETZI G H. Band structure for the propagation of elastic waves in superlattices[J]. Journal of the Acoustical Society of America, 1994, 95(1): 86-90
    RYUE J, THOMPSON D J, WHITE P R, et al. Decay rates of propagating waves in railway tracks at high frequencies[J]. Journal of Sound and Vibration, 2009, 320(4/5): 955-976
    HECKL M A. Railway noise-can random sleeper spacings help?[J]. ActaAcustica united with Acustica, 1995, 81(6): 559-564
    HECKL M A. Coupled waves on a periodically supported Timoshenko beam[J]. Journal of Sound and Vibration, 2002, 252(5): 849-882
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  245
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-07
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回