An Improved LBP Feature for Rail Fastener Identification
-
摘要: 为了提高铁路扣件基于视觉的自动化检测精度,提出了一种改进的LBP (local binary pattern)编码算法. 该方法为了避免基本LBP对噪声敏感问题,根据不同邻域的不同噪声强度,结合测量误差服从高斯分布的原则,计算邻域内像素均值和偏差;根据偏差大小,自动设置阈值,实现自适应噪声抑制. 为了避免基本LBP表达邻域差分关系不完整的缺陷,提出了利用邻域内随机采样的方式得到采样点对,通过比较随机点对的差分关系得到LBP编码. 对在晴天、阴天、雨天等不同天气条件下的铁路扣件图像上进行实验,并与原始以及其他改进LBP进行比较. 结果表明,本文的算法具有更高的检测准确率,晴天提高了3.32%,阴天提高了3.27%,雨天提高了4.10%,能够满足铁路扣件自动化检测的需要.Abstract: An improved LBP (local binary pattern) algorithm is proposed to raise the auto-detection accuracy on fasteners. The original LBP is sensitive to noise. To solve this problem, the pixel means value and deviation are calculated, according to the different noise in different neighborhood and the measuring error is following the Gaussian distribution. Then the threshold is set to realize adaptive noise suppression, according to the deviation values. The original LBP cannot completely express the neighboring difference relationship. To avoid this defect, the proposed method gets the sampled point pairs by random sampling in neighborhood. Then LBP coding is generated through comparing the difference relationship of random point pairs. Tests are carried on fasteners images on clear, cloudy and rainy days with original and other improved LBP algorithms. The comparing results show the proposed method owns more detection accuracy. The detection accuracies increase by 3.32%, 3.27% and 4.10% independently on clear, cloudy and rainy days, which shows the proposed method can meet auto-detection on railway fasteners.
-
Key words:
- LBP /
- anti-noise /
- fastener /
- image recognition /
- image detection
-
表 1 晴天扣件识别率
Table 1. Fastener recognition on clear day
方法 识别率/% LBP 89.35 LBPU2 90.46 LTP 91.85 DLBP 90.89 FLBP 91.42 NRLBP 93.62 本文方法 96.94 表 3 雨天扣件识别率
Table 3. Fastener recognition on rainy day
方法 识别率/% LBP 75.16 LBPU2 77.32 LTP 80.52 DLBP 79.06 FLBP 79.45 NRLBP 81.23 本文方法 85.33 表 2 阴天扣件识别率
Table 2. Fastener recognition on cloudy day
方法 识别率/% LBP 85.76 LBPU2 86.59 LTP 88.03 DLBP 86.95 FLBP 88.72 NRLBP 89.57 本文方法 92.84 表 4 计算时间对比
Table 4. Computation time comparisons
方法 时间/s LBP 108.711 本文方法 157.408 -
SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]//IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. [S. l.]: Alexandria: IEEE, 2006: 56-59 MARINO F, DISTANTE A, MAZZEO P, et al. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews), 2007, 37(3): 418-428 YELLA S, DOUGHERTY M, GUPTA N. et al. Condition monitoring of wooden railway sleepers[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(1): 38-55 许贵阳,史天运,任盛伟,等. 基于计算机视觉的车载轨道巡检系统研制[J]. 中国铁道科学,2013,34(1): 139-144XU Guiyang, SHI Tianyun, REN Shengwei, et al. Development of the on-board track inspection system based on computer vision[J]. China Railway Science, 2013, 34(1): 139-144 肖新标,金学松,温泽峰. 钢轨扣件失效对列车动态脱轨的影响[J]. 交通运输工程学报,2006,6(1): 10-15XIAO Xinbiao, JIN Xuesong, WEN Zefeng. Influence of rail fastener failure on vehicle dynamic derail-ment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15 YANG Jinfeng, WEI Tao, LIU Manhua, et al. An efficient direction field-based method for the detection of fasteners on high-speed railways[J]. Sensors, 2011, 11(8): 7364-7381 XIA Yiqi, XIE Fengying, JIANG Zhiguo. Broken railway fastener detection based on adaboost algorithm[C]// International Conference on Opto-electronics and Image Processing. Beijing: IEEE, 2010: 313-316 刘甲甲,李柏林,罗建桥,等. 融合PHOG和MSLBP特征的铁路扣件检测算法[J]. 西南交通大学学报,2015,50(2): 256-263LIU Jiajia, LI Bailin, LUO Jianqiao. et al. Railway fastener detection algorithm integrating PHOG and MSLBP features[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 256-263 REN J, JIANG X, YUAN J. LBP encoding schemes jointly utilizing the information of current bit and other LBP bits[J]. IEEE Signal Processing Letters, 2015, 22(12): 2373-2377 REN J, JIANG X, YUAN J. Noise-resistant local binary pattern with an embedded error-correction mechanism[J]. IEEE Transactions on Image Processing, 2013, 22(10): 4049-4060 GUO Zhenhua, ZHANG Lei, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663 SONG Tiecheng, LI Hongliang, MENG Fanman, et al. Noise-robust texture description using local contrast patterns via global measures[J]. IEEE Signal Processing Letters, 2014, 21(1): 93-96 WANG Kai, BICHOT C, ZHU Chao, et al. Pixel to patch sampling structure and local neighboring intensity relationship patterns for texture classification[J]. IEEE Signal Processing Letters, 2013, 20(9): 853-856 LIAO S, LAW M W K, CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE transactions on image processing, 2009, 18(5): 1107-1118 KWAK J T, XU S, WOOD B J. Efficient data mining for local binary pattern in texture image analysis[J]. Expert Systems with Applications, 2015, 42(9): 4529-4539 SATPATHY A, JIANG X, ENG H L. LBP-based edge-texture features for object recognition[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1953-1964 REN J, JIANG X, YUAN J. et al. Optimizing LBP structure for visual recognition using binary quadratic programming[J]. IEEE Signal Processing Letters, 2014, 21(11): 1346-1350 LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3681-3693 OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987 TAN X, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650 AHONEN T, PIETIKAINEN M. Soft histograms for local binary patterns[C]//Proceedings of the Finnish signal processing symposium. Finsic: [s. n.], 2007, 5(9): 1-4 WEINBERGER M J, RISSANEN J J, AERS R B. Applications of universal context modeling to lossless compression of gray-scale images[J]. IEEE Transactions on Image Processing, 1996, 5(4): 575-586 期刊类型引用(18)
1. 周佩禹,姚萍屏,徐宇轩,周海滨,王兴,邓敏文,康丽,陈琦,林永强,袁仔豪. 高速列车铜基粉末冶金闸片材料研究进展. 润滑与密封. 2025(01): 182-192 . 百度学术
2. 刘楠,金星,史建航,王炳锟,施玉奇,丰明阳. 高速列车盘形制动器热-结构耦合方法研究. 铁道科学与工程学报. 2024(02): 456-464 . 百度学术
3. 陈诗佳,周和超. 考虑不同制动工况的制动盘力承载边界研究. 机电工程技术. 2024(03): 22-25+35 . 百度学术
4. 唐斌,项载毓,范志勇,陈伟,张棋翔,吴道刚,莫继良. 沙粒介入高速列车制动界面对摩擦块摩擦磨损行为的影响. 摩擦学学报(中英文). 2024(06): 789-799 . 百度学术
5. 李杰,王莉,王晓燕,胡铮,王欣,高紫钰,汪诗敏. 延缓高速列车制动盘热裂纹扩展的机理和关键技术综述. 交通运输工程学报. 2024(06): 26-42 . 百度学术
6. 任育博,彭金方,曹超,唐攀,申长慧,方婧婷,朱旻昊. 雨水环境下碳陶复合材料的载流摩擦磨损性能. 机械工程材料. 2023(01): 93-99+118+110 . 百度学术
7. 谢鑫林,刘晓军,翟财周,朱松,苟青炳,吴楠,刘勇. 300 km/h动车组制动闸片低温摩擦性能与微观形貌演变. 轨道交通材料. 2023(01): 65-68 . 百度学术
8. 周航博. 长大坡道高速列车制动闸片磨耗规律分析. 河南科学. 2023(09): 1367-1374 . 百度学术
9. 杨智勇,臧家俊,韩超,李卫京,李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究. 材料导报. 2022(09): 49-56 . 百度学术
10. 李德仓,陈晓强,孟建军,胥如迅,祁文哲,张子建. 恶劣环境下铁路行车安全研究综述. 交通信息与安全. 2022(04): 26-37 . 百度学术
11. 范志勇,项载毓,莫继良,钱泓桦,陈伟,周仲荣. 摩擦粒子填充材料对高速列车闸片制动性能的影响. 摩擦学学报. 2022(05): 900-912 . 百度学术
12. 唐斌,范志勇,项载毓,吴元科,黄博,莫继良. 高速列车制动摩擦块切入端特征对制动界面特性的影响. 中国机械工程. 2021(04): 412-419 . 百度学术
13. 周素霞,白小玉,裴顶峰,孙宇铎,杨文澈. 基于微尺度的列车制动金属镶嵌行为研究. 机械工程学报. 2021(02): 210-218 . 百度学术
14. 王东伟,吴霄,项载毓,莫继良. 高速列车盘形制动系统热机耦合特性分析. 西南交通大学学报. 2021(02): 428-436 . 本站查看
15. 张超,马蕾,丁昊昊,郭立昌,王文健,郭俊,刘启跃. 低温环境下制动参数对列车制动材料摩擦性能的影响. 机械工程学报. 2021(08): 230-239 . 百度学术
16. 范志勇,项载毓,谭德强,唐斌,李贞,莫继良,周仲荣. CRH380A型高速动车组制动闸片摩擦损伤分析. 摩擦学学报. 2020(02): 185-194 . 百度学术
17. 姚萍屏,肖叶龙,张忠义,周海滨,贡太敏,赵林,邓敏文. 高速列车粉末冶金制动材料的研究进展. 中国材料进展. 2019(02): 116-125 . 百度学术
18. 张亮,王志伟,王权,莫继良,冯鉴,王俊勇. 考虑车辆振动的高速列车制动系统动态响应. 振动.测试与诊断. 2023(04): 800-808+835-836 . 百度学术
其他类型引用(14)
-