• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

一种改进的LBP特征实现铁路扣件识别

王强 李柏林 侯云 范宏

王强, 李柏林, 侯云, 范宏. 一种改进的LBP特征实现铁路扣件识别[J]. 西南交通大学学报, 2018, 53(5): 893-899. doi: 10.3969/j.issn.0258-2724.2018.05.003
引用本文: 王强, 李柏林, 侯云, 范宏. 一种改进的LBP特征实现铁路扣件识别[J]. 西南交通大学学报, 2018, 53(5): 893-899. doi: 10.3969/j.issn.0258-2724.2018.05.003
WANG Qiang, LI Bailin, HOU Yun, FAN Hong. An Improved LBP Feature for Rail Fastener Identification[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 893-899. doi: 10.3969/j.issn.0258-2724.2018.05.003
Citation: WANG Qiang, LI Bailin, HOU Yun, FAN Hong. An Improved LBP Feature for Rail Fastener Identification[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 893-899. doi: 10.3969/j.issn.0258-2724.2018.05.003

一种改进的LBP特征实现铁路扣件识别

doi: 10.3969/j.issn.0258-2724.2018.05.003
详细信息
    作者简介:

    王强(1979—),男,博士研究生,研究方向为计算机视觉、图像处理,E-mail: wqiangsky@163.com

    通讯作者:

    李柏林(1962—),男,教授,博士生导师,研究方向为计算机图形图像处理,E-mail: blli62@263.net

  • 中图分类号: TP391.41

An Improved LBP Feature for Rail Fastener Identification

  • 摘要: 为了提高铁路扣件基于视觉的自动化检测精度,提出了一种改进的LBP (local binary pattern)编码算法. 该方法为了避免基本LBP对噪声敏感问题,根据不同邻域的不同噪声强度,结合测量误差服从高斯分布的原则,计算邻域内像素均值和偏差;根据偏差大小,自动设置阈值,实现自适应噪声抑制. 为了避免基本LBP表达邻域差分关系不完整的缺陷,提出了利用邻域内随机采样的方式得到采样点对,通过比较随机点对的差分关系得到LBP编码. 对在晴天、阴天、雨天等不同天气条件下的铁路扣件图像上进行实验,并与原始以及其他改进LBP进行比较. 结果表明,本文的算法具有更高的检测准确率,晴天提高了3.32%,阴天提高了3.27%,雨天提高了4.10%,能够满足铁路扣件自动化检测的需要.

     

  • 图 1  噪声抑制过程示意

    Figure 1.  Schematic diagram of noise suppression process

    图 2  随机选择点对LBP编码示意

    Figure 2.  Schematic diagram of LBP coding for random point pairs

    图 3  随机点生成示意

    Figure 3.  Schematic diagram for random points generating

    图 4  不同天气下扣件

    Figure 4.  Fastener images under different weathers

    图 5  本文编码图像示例

    Figure 5.  Schematic diagram for coding images

    图 6  LBP编码图像对比示例

    Figure 6.  Contrast examples for coding images

    图 7  扣件图像不同阈值下3种编码方式的识别率

    Figure 7.  Fastener Recognition rates of three coding methods with different thresholds

    表  1  晴天扣件识别率

    Table  1.   Fastener recognition on clear day

    方法 识别率/%
    LBP 89.35
    LBPU2 90.46
    LTP 91.85
    DLBP 90.89
    FLBP 91.42
    NRLBP 93.62
    本文方法 96.94
    下载: 导出CSV

    表  3  雨天扣件识别率

    Table  3.   Fastener recognition on rainy day

    方法 识别率/%
    LBP 75.16
    LBPU2 77.32
    LTP 80.52
    DLBP 79.06
    FLBP 79.45
    NRLBP 81.23
    本文方法 85.33
    下载: 导出CSV

    表  2  阴天扣件识别率

    Table  2.   Fastener recognition on cloudy day

    方法 识别率/%
    LBP 85.76
    LBPU2 86.59
    LTP 88.03
    DLBP 86.95
    FLBP 88.72
    NRLBP 89.57
    本文方法 92.84
    下载: 导出CSV

    表  4  计算时间对比

    Table  4.   Computation time comparisons

    方法 时间/s
    LBP 108.711
    本文方法 157.408
    下载: 导出CSV
  • SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]//IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. [S. l.]: Alexandria: IEEE, 2006: 56-59
    MARINO F, DISTANTE A, MAZZEO P, et al. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews), 2007, 37(3): 418-428
    YELLA S, DOUGHERTY M, GUPTA N. et al. Condition monitoring of wooden railway sleepers[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(1): 38-55
    许贵阳,史天运,任盛伟,等. 基于计算机视觉的车载轨道巡检系统研制[J]. 中国铁道科学,2013,34(1): 139-144

    XU Guiyang, SHI Tianyun, REN Shengwei, et al. Development of the on-board track inspection system based on computer vision[J]. China Railway Science, 2013, 34(1): 139-144
    肖新标,金学松,温泽峰. 钢轨扣件失效对列车动态脱轨的影响[J]. 交通运输工程学报,2006,6(1): 10-15

    XIAO Xinbiao, JIN Xuesong, WEN Zefeng. Influence of rail fastener failure on vehicle dynamic derail-ment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15
    YANG Jinfeng, WEI Tao, LIU Manhua, et al. An efficient direction field-based method for the detection of fasteners on high-speed railways[J]. Sensors, 2011, 11(8): 7364-7381
    XIA Yiqi, XIE Fengying, JIANG Zhiguo. Broken railway fastener detection based on adaboost algorithm[C]// International Conference on Opto-electronics and Image Processing. Beijing: IEEE, 2010: 313-316
    刘甲甲,李柏林,罗建桥,等. 融合PHOG和MSLBP特征的铁路扣件检测算法[J]. 西南交通大学学报,2015,50(2): 256-263

    LIU Jiajia, LI Bailin, LUO Jianqiao. et al. Railway fastener detection algorithm integrating PHOG and MSLBP features[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 256-263
    REN J, JIANG X, YUAN J. LBP encoding schemes jointly utilizing the information of current bit and other LBP bits[J]. IEEE Signal Processing Letters, 2015, 22(12): 2373-2377
    REN J, JIANG X, YUAN J. Noise-resistant local binary pattern with an embedded error-correction mechanism[J]. IEEE Transactions on Image Processing, 2013, 22(10): 4049-4060
    GUO Zhenhua, ZHANG Lei, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663
    SONG Tiecheng, LI Hongliang, MENG Fanman, et al. Noise-robust texture description using local contrast patterns via global measures[J]. IEEE Signal Processing Letters, 2014, 21(1): 93-96
    WANG Kai, BICHOT C, ZHU Chao, et al. Pixel to patch sampling structure and local neighboring intensity relationship patterns for texture classification[J]. IEEE Signal Processing Letters, 2013, 20(9): 853-856
    LIAO S, LAW M W K, CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE transactions on image processing, 2009, 18(5): 1107-1118
    KWAK J T, XU S, WOOD B J. Efficient data mining for local binary pattern in texture image analysis[J]. Expert Systems with Applications, 2015, 42(9): 4529-4539
    SATPATHY A, JIANG X, ENG H L. LBP-based edge-texture features for object recognition[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1953-1964
    REN J, JIANG X, YUAN J. et al. Optimizing LBP structure for visual recognition using binary quadratic programming[J]. IEEE Signal Processing Letters, 2014, 21(11): 1346-1350
    LI Wei, CHEN Chen, SU Hongjun, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3681-3693
    OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
    TAN X, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650
    AHONEN T, PIETIKAINEN M. Soft histograms for local binary patterns[C]//Proceedings of the Finnish signal processing symposium. Finsic: [s. n.], 2007, 5(9): 1-4
    WEINBERGER M J, RISSANEN J J, AERS R B. Applications of universal context modeling to lossless compression of gray-scale images[J]. IEEE Transactions on Image Processing, 1996, 5(4): 575-586
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  264
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-08
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回